This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: The ordered power series structure is a totally ordered set.
(Contributed by Mario Carneiro, 10-Jan-2015)
|
|
Ref |
Expression |
|
Hypotheses |
opsrso.o |
|
|
|
opsrso.i |
|
|
|
opsrso.r |
|
|
|
opsrso.t |
|
|
|
opsrso.w |
|
|
|
opsrso.l |
|
|
|
opsrso.b |
|
|
Assertion |
opsrso |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opsrso.o |
|
| 2 |
|
opsrso.i |
|
| 3 |
|
opsrso.r |
|
| 4 |
|
opsrso.t |
|
| 5 |
|
opsrso.w |
|
| 6 |
|
opsrso.l |
|
| 7 |
|
opsrso.b |
|
| 8 |
1 2 3 4 5
|
opsrtos |
|
| 9 |
|
eqid |
|
| 10 |
7 9 6
|
tosso |
|
| 11 |
10
|
ibi |
|
| 12 |
8 11
|
syl |
|
| 13 |
12
|
simpld |
|