This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is a unique ordered pair fulfilling a wff iff there are uniquely two sets fulfilling a corresponding wff. (Contributed by AV, 24-Jun-2023) (Revised by AV, 1-Jul-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | opreu2reurex.a | ⊢ ( 𝑝 = 〈 𝑎 , 𝑏 〉 → ( 𝜑 ↔ 𝜒 ) ) | |
| Assertion | opreu2reurex | ⊢ ( ∃! 𝑝 ∈ ( 𝐴 × 𝐵 ) 𝜑 ↔ ( ∃! 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ∧ ∃! 𝑏 ∈ 𝐵 ∃ 𝑎 ∈ 𝐴 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opreu2reurex.a | ⊢ ( 𝑝 = 〈 𝑎 , 𝑏 〉 → ( 𝜑 ↔ 𝜒 ) ) | |
| 2 | eqcom | ⊢ ( 〈 𝑥 , 𝑦 〉 = 〈 𝑎 , 𝑏 〉 ↔ 〈 𝑎 , 𝑏 〉 = 〈 𝑥 , 𝑦 〉 ) | |
| 3 | vex | ⊢ 𝑎 ∈ V | |
| 4 | vex | ⊢ 𝑏 ∈ V | |
| 5 | 3 4 | opth | ⊢ ( 〈 𝑎 , 𝑏 〉 = 〈 𝑥 , 𝑦 〉 ↔ ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) |
| 6 | 2 5 | bitri | ⊢ ( 〈 𝑥 , 𝑦 〉 = 〈 𝑎 , 𝑏 〉 ↔ ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) |
| 7 | 6 | imbi2i | ⊢ ( ( 𝜒 → 〈 𝑥 , 𝑦 〉 = 〈 𝑎 , 𝑏 〉 ) ↔ ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) ) |
| 8 | 7 | a1i | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝜒 → 〈 𝑥 , 𝑦 〉 = 〈 𝑎 , 𝑏 〉 ) ↔ ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) ) ) |
| 9 | 8 | 2ralbidva | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜒 → 〈 𝑥 , 𝑦 〉 = 〈 𝑎 , 𝑏 〉 ) ↔ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) ) ) |
| 10 | 9 | 2rexbiia | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜒 → 〈 𝑥 , 𝑦 〉 = 〈 𝑎 , 𝑏 〉 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) ) |
| 11 | 10 | anbi2i | ⊢ ( ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ∧ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜒 → 〈 𝑥 , 𝑦 〉 = 〈 𝑎 , 𝑏 〉 ) ) ↔ ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ∧ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) ) ) |
| 12 | 1 | reu3op | ⊢ ( ∃! 𝑝 ∈ ( 𝐴 × 𝐵 ) 𝜑 ↔ ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ∧ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜒 → 〈 𝑥 , 𝑦 〉 = 〈 𝑎 , 𝑏 〉 ) ) ) |
| 13 | 2reu4 | ⊢ ( ( ∃! 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ∧ ∃! 𝑏 ∈ 𝐵 ∃ 𝑎 ∈ 𝐴 𝜒 ) ↔ ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ∧ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) ) ) | |
| 14 | 11 12 13 | 3bitr4i | ⊢ ( ∃! 𝑝 ∈ ( 𝐴 × 𝐵 ) 𝜑 ↔ ( ∃! 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ∧ ∃! 𝑏 ∈ 𝐵 ∃ 𝑎 ∈ 𝐴 𝜒 ) ) |