This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If there is a unique ordered pair fulfilling a wff, then there is a double restricted unique existential qualification fulfilling a corresponding wff. (Contributed by AV, 25-Jun-2023) (Revised by AV, 2-Jul-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | opreu2reurex.a | ⊢ ( 𝑝 = 〈 𝑎 , 𝑏 〉 → ( 𝜑 ↔ 𝜒 ) ) | |
| Assertion | opreu2reu | ⊢ ( ∃! 𝑝 ∈ ( 𝐴 × 𝐵 ) 𝜑 → ∃! 𝑎 ∈ 𝐴 ∃! 𝑏 ∈ 𝐵 𝜒 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opreu2reurex.a | ⊢ ( 𝑝 = 〈 𝑎 , 𝑏 〉 → ( 𝜑 ↔ 𝜒 ) ) | |
| 2 | 1 | opreu2reurex | ⊢ ( ∃! 𝑝 ∈ ( 𝐴 × 𝐵 ) 𝜑 ↔ ( ∃! 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ∧ ∃! 𝑏 ∈ 𝐵 ∃ 𝑎 ∈ 𝐴 𝜒 ) ) |
| 3 | 2rexreu | ⊢ ( ( ∃! 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ∧ ∃! 𝑏 ∈ 𝐵 ∃ 𝑎 ∈ 𝐴 𝜒 ) → ∃! 𝑎 ∈ 𝐴 ∃! 𝑏 ∈ 𝐵 𝜒 ) | |
| 4 | 2 3 | sylbi | ⊢ ( ∃! 𝑝 ∈ ( 𝐴 × 𝐵 ) 𝜑 → ∃! 𝑎 ∈ 𝐴 ∃! 𝑏 ∈ 𝐵 𝜒 ) |