This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the multiplication operation of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opprval.1 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| opprval.2 | ⊢ · = ( .r ‘ 𝑅 ) | ||
| opprval.3 | ⊢ 𝑂 = ( oppr ‘ 𝑅 ) | ||
| opprmulfval.4 | ⊢ ∙ = ( .r ‘ 𝑂 ) | ||
| Assertion | opprmulfval | ⊢ ∙ = tpos · |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprval.1 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | opprval.2 | ⊢ · = ( .r ‘ 𝑅 ) | |
| 3 | opprval.3 | ⊢ 𝑂 = ( oppr ‘ 𝑅 ) | |
| 4 | opprmulfval.4 | ⊢ ∙ = ( .r ‘ 𝑂 ) | |
| 5 | 1 2 3 | opprval | ⊢ 𝑂 = ( 𝑅 sSet 〈 ( .r ‘ ndx ) , tpos · 〉 ) |
| 6 | 5 | fveq2i | ⊢ ( .r ‘ 𝑂 ) = ( .r ‘ ( 𝑅 sSet 〈 ( .r ‘ ndx ) , tpos · 〉 ) ) |
| 7 | 2 | fvexi | ⊢ · ∈ V |
| 8 | 7 | tposex | ⊢ tpos · ∈ V |
| 9 | mulridx | ⊢ .r = Slot ( .r ‘ ndx ) | |
| 10 | 9 | setsid | ⊢ ( ( 𝑅 ∈ V ∧ tpos · ∈ V ) → tpos · = ( .r ‘ ( 𝑅 sSet 〈 ( .r ‘ ndx ) , tpos · 〉 ) ) ) |
| 11 | 8 10 | mpan2 | ⊢ ( 𝑅 ∈ V → tpos · = ( .r ‘ ( 𝑅 sSet 〈 ( .r ‘ ndx ) , tpos · 〉 ) ) ) |
| 12 | 6 11 | eqtr4id | ⊢ ( 𝑅 ∈ V → ( .r ‘ 𝑂 ) = tpos · ) |
| 13 | tpos0 | ⊢ tpos ∅ = ∅ | |
| 14 | 9 | str0 | ⊢ ∅ = ( .r ‘ ∅ ) |
| 15 | 13 14 | eqtr2i | ⊢ ( .r ‘ ∅ ) = tpos ∅ |
| 16 | fvprc | ⊢ ( ¬ 𝑅 ∈ V → ( oppr ‘ 𝑅 ) = ∅ ) | |
| 17 | 3 16 | eqtrid | ⊢ ( ¬ 𝑅 ∈ V → 𝑂 = ∅ ) |
| 18 | 17 | fveq2d | ⊢ ( ¬ 𝑅 ∈ V → ( .r ‘ 𝑂 ) = ( .r ‘ ∅ ) ) |
| 19 | fvprc | ⊢ ( ¬ 𝑅 ∈ V → ( .r ‘ 𝑅 ) = ∅ ) | |
| 20 | 2 19 | eqtrid | ⊢ ( ¬ 𝑅 ∈ V → · = ∅ ) |
| 21 | 20 | tposeqd | ⊢ ( ¬ 𝑅 ∈ V → tpos · = tpos ∅ ) |
| 22 | 15 18 21 | 3eqtr4a | ⊢ ( ¬ 𝑅 ∈ V → ( .r ‘ 𝑂 ) = tpos · ) |
| 23 | 12 22 | pm2.61i | ⊢ ( .r ‘ 𝑂 ) = tpos · |
| 24 | 4 23 | eqtri | ⊢ ∙ = tpos · |