This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A monomorphism in the opposite category is an epimorphism. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppcmon.o | ||
| oppcmon.c | |||
| oppcmon.m | |||
| oppcmon.e | |||
| Assertion | oppcmon |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcmon.o | ||
| 2 | oppcmon.c | ||
| 3 | oppcmon.m | ||
| 4 | oppcmon.e | ||
| 5 | fveq2 | ||
| 6 | 5 1 | eqtr4di | |
| 7 | 6 | fveq2d | |
| 8 | 7 3 | eqtr4di | |
| 9 | 8 | tposeqd | |
| 10 | df-epi | ||
| 11 | 3 | fvexi | |
| 12 | 11 | tposex | |
| 13 | 9 10 12 | fvmpt | |
| 14 | 2 13 | syl | |
| 15 | 4 14 | eqtrid | |
| 16 | 15 | oveqd | |
| 17 | ovtpos | ||
| 18 | 16 17 | eqtr2di |