This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the functionalized Hom-set operation. (Contributed by Mario Carneiro, 4-Jan-2017) (Proof shortened by AV, 1-Mar-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | homffval.f | ⊢ 𝐹 = ( Homf ‘ 𝐶 ) | |
| homffval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| homffval.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| Assertion | homffval | ⊢ 𝐹 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 𝐻 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | homffval.f | ⊢ 𝐹 = ( Homf ‘ 𝐶 ) | |
| 2 | homffval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | homffval.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 4 | fveq2 | ⊢ ( 𝑐 = 𝐶 → ( Base ‘ 𝑐 ) = ( Base ‘ 𝐶 ) ) | |
| 5 | 4 2 | eqtr4di | ⊢ ( 𝑐 = 𝐶 → ( Base ‘ 𝑐 ) = 𝐵 ) |
| 6 | fveq2 | ⊢ ( 𝑐 = 𝐶 → ( Hom ‘ 𝑐 ) = ( Hom ‘ 𝐶 ) ) | |
| 7 | 6 3 | eqtr4di | ⊢ ( 𝑐 = 𝐶 → ( Hom ‘ 𝑐 ) = 𝐻 ) |
| 8 | 7 | oveqd | ⊢ ( 𝑐 = 𝐶 → ( 𝑥 ( Hom ‘ 𝑐 ) 𝑦 ) = ( 𝑥 𝐻 𝑦 ) ) |
| 9 | 5 5 8 | mpoeq123dv | ⊢ ( 𝑐 = 𝐶 → ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ ( 𝑥 ( Hom ‘ 𝑐 ) 𝑦 ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 𝐻 𝑦 ) ) ) |
| 10 | df-homf | ⊢ Homf = ( 𝑐 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ ( 𝑥 ( Hom ‘ 𝑐 ) 𝑦 ) ) ) | |
| 11 | 2 | fvexi | ⊢ 𝐵 ∈ V |
| 12 | 11 11 | mpoex | ⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 𝐻 𝑦 ) ) ∈ V |
| 13 | 9 10 12 | fvmpt | ⊢ ( 𝐶 ∈ V → ( Homf ‘ 𝐶 ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 𝐻 𝑦 ) ) ) |
| 14 | fvprc | ⊢ ( ¬ 𝐶 ∈ V → ( Homf ‘ 𝐶 ) = ∅ ) | |
| 15 | fvprc | ⊢ ( ¬ 𝐶 ∈ V → ( Base ‘ 𝐶 ) = ∅ ) | |
| 16 | 2 15 | eqtrid | ⊢ ( ¬ 𝐶 ∈ V → 𝐵 = ∅ ) |
| 17 | 16 | olcd | ⊢ ( ¬ 𝐶 ∈ V → ( 𝐵 = ∅ ∨ 𝐵 = ∅ ) ) |
| 18 | 0mpo0 | ⊢ ( ( 𝐵 = ∅ ∨ 𝐵 = ∅ ) → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 𝐻 𝑦 ) ) = ∅ ) | |
| 19 | 17 18 | syl | ⊢ ( ¬ 𝐶 ∈ V → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 𝐻 𝑦 ) ) = ∅ ) |
| 20 | 14 19 | eqtr4d | ⊢ ( ¬ 𝐶 ∈ V → ( Homf ‘ 𝐶 ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 𝐻 𝑦 ) ) ) |
| 21 | 13 20 | pm2.61i | ⊢ ( Homf ‘ 𝐶 ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 𝐻 𝑦 ) ) |
| 22 | 1 21 | eqtri | ⊢ 𝐹 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 𝐻 𝑦 ) ) |