This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set is open iff it is a neighborhood of all of its points. (Contributed by Jeff Hankins, 15-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | opnnei | ⊢ ( 𝐽 ∈ Top → ( 𝑆 ∈ 𝐽 ↔ ∀ 𝑥 ∈ 𝑆 𝑆 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0opn | ⊢ ( 𝐽 ∈ Top → ∅ ∈ 𝐽 ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 = ∅ ) → ∅ ∈ 𝐽 ) |
| 3 | eleq1 | ⊢ ( 𝑆 = ∅ → ( 𝑆 ∈ 𝐽 ↔ ∅ ∈ 𝐽 ) ) | |
| 4 | 3 | adantl | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 = ∅ ) → ( 𝑆 ∈ 𝐽 ↔ ∅ ∈ 𝐽 ) ) |
| 5 | 2 4 | mpbird | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 = ∅ ) → 𝑆 ∈ 𝐽 ) |
| 6 | rzal | ⊢ ( 𝑆 = ∅ → ∀ 𝑥 ∈ 𝑆 𝑆 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) | |
| 7 | 6 | adantl | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 = ∅ ) → ∀ 𝑥 ∈ 𝑆 𝑆 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) |
| 8 | 5 7 | 2thd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 = ∅ ) → ( 𝑆 ∈ 𝐽 ↔ ∀ 𝑥 ∈ 𝑆 𝑆 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) ) |
| 9 | opnneip | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽 ∧ 𝑥 ∈ 𝑆 ) → 𝑆 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) | |
| 10 | 9 | 3expia | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽 ) → ( 𝑥 ∈ 𝑆 → 𝑆 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) ) |
| 11 | 10 | ralrimiv | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽 ) → ∀ 𝑥 ∈ 𝑆 𝑆 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) |
| 12 | 11 | ex | ⊢ ( 𝐽 ∈ Top → ( 𝑆 ∈ 𝐽 → ∀ 𝑥 ∈ 𝑆 𝑆 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) ) |
| 13 | 12 | adantr | ⊢ ( ( 𝐽 ∈ Top ∧ ¬ 𝑆 = ∅ ) → ( 𝑆 ∈ 𝐽 → ∀ 𝑥 ∈ 𝑆 𝑆 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) ) |
| 14 | df-ne | ⊢ ( 𝑆 ≠ ∅ ↔ ¬ 𝑆 = ∅ ) | |
| 15 | r19.2z | ⊢ ( ( 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 𝑆 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) → ∃ 𝑥 ∈ 𝑆 𝑆 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) | |
| 16 | 15 | ex | ⊢ ( 𝑆 ≠ ∅ → ( ∀ 𝑥 ∈ 𝑆 𝑆 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) → ∃ 𝑥 ∈ 𝑆 𝑆 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) ) |
| 17 | 14 16 | sylbir | ⊢ ( ¬ 𝑆 = ∅ → ( ∀ 𝑥 ∈ 𝑆 𝑆 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) → ∃ 𝑥 ∈ 𝑆 𝑆 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) ) |
| 18 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 19 | 18 | neii1 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) → 𝑆 ⊆ ∪ 𝐽 ) |
| 20 | 19 | ex | ⊢ ( 𝐽 ∈ Top → ( 𝑆 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) → 𝑆 ⊆ ∪ 𝐽 ) ) |
| 21 | 20 | rexlimdvw | ⊢ ( 𝐽 ∈ Top → ( ∃ 𝑥 ∈ 𝑆 𝑆 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) → 𝑆 ⊆ ∪ 𝐽 ) ) |
| 22 | 17 21 | sylan9r | ⊢ ( ( 𝐽 ∈ Top ∧ ¬ 𝑆 = ∅ ) → ( ∀ 𝑥 ∈ 𝑆 𝑆 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) → 𝑆 ⊆ ∪ 𝐽 ) ) |
| 23 | 18 | ntrss2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑆 ) |
| 24 | 23 | adantr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ) ∧ ∀ 𝑥 ∈ 𝑆 { 𝑥 } ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑆 ) |
| 25 | vex | ⊢ 𝑥 ∈ V | |
| 26 | 25 | snss | ⊢ ( 𝑥 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↔ { 𝑥 } ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 27 | 26 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝑆 𝑥 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↔ ∀ 𝑥 ∈ 𝑆 { 𝑥 } ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 28 | dfss3 | ⊢ ( 𝑆 ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↔ ∀ 𝑥 ∈ 𝑆 𝑥 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) | |
| 29 | 28 | biimpri | ⊢ ( ∀ 𝑥 ∈ 𝑆 𝑥 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) → 𝑆 ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 30 | 29 | adantl | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ) ∧ ∀ 𝑥 ∈ 𝑆 𝑥 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝑆 ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 31 | 27 30 | sylan2br | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ) ∧ ∀ 𝑥 ∈ 𝑆 { 𝑥 } ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝑆 ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 32 | 24 31 | eqssd | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ) ∧ ∀ 𝑥 ∈ 𝑆 { 𝑥 } ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = 𝑆 ) |
| 33 | 32 | ex | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ) → ( ∀ 𝑥 ∈ 𝑆 { 𝑥 } ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = 𝑆 ) ) |
| 34 | 25 | snss | ⊢ ( 𝑥 ∈ 𝑆 ↔ { 𝑥 } ⊆ 𝑆 ) |
| 35 | sstr2 | ⊢ ( { 𝑥 } ⊆ 𝑆 → ( 𝑆 ⊆ ∪ 𝐽 → { 𝑥 } ⊆ ∪ 𝐽 ) ) | |
| 36 | 35 | com12 | ⊢ ( 𝑆 ⊆ ∪ 𝐽 → ( { 𝑥 } ⊆ 𝑆 → { 𝑥 } ⊆ ∪ 𝐽 ) ) |
| 37 | 36 | adantl | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ) → ( { 𝑥 } ⊆ 𝑆 → { 𝑥 } ⊆ ∪ 𝐽 ) ) |
| 38 | 34 37 | biimtrid | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ) → ( 𝑥 ∈ 𝑆 → { 𝑥 } ⊆ ∪ 𝐽 ) ) |
| 39 | 38 | imp | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ) ∧ 𝑥 ∈ 𝑆 ) → { 𝑥 } ⊆ ∪ 𝐽 ) |
| 40 | 18 | neiint | ⊢ ( ( 𝐽 ∈ Top ∧ { 𝑥 } ⊆ ∪ 𝐽 ∧ 𝑆 ⊆ ∪ 𝐽 ) → ( 𝑆 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↔ { 𝑥 } ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 41 | 40 | 3com23 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ∧ { 𝑥 } ⊆ ∪ 𝐽 ) → ( 𝑆 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↔ { 𝑥 } ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 42 | 41 | 3expa | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ) ∧ { 𝑥 } ⊆ ∪ 𝐽 ) → ( 𝑆 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↔ { 𝑥 } ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 43 | 39 42 | syldan | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑆 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↔ { 𝑥 } ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 44 | 43 | ralbidva | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ) → ( ∀ 𝑥 ∈ 𝑆 𝑆 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↔ ∀ 𝑥 ∈ 𝑆 { 𝑥 } ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 45 | 18 | isopn3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ) → ( 𝑆 ∈ 𝐽 ↔ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = 𝑆 ) ) |
| 46 | 33 44 45 | 3imtr4d | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ) → ( ∀ 𝑥 ∈ 𝑆 𝑆 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) → 𝑆 ∈ 𝐽 ) ) |
| 47 | 46 | ex | ⊢ ( 𝐽 ∈ Top → ( 𝑆 ⊆ ∪ 𝐽 → ( ∀ 𝑥 ∈ 𝑆 𝑆 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) → 𝑆 ∈ 𝐽 ) ) ) |
| 48 | 47 | com23 | ⊢ ( 𝐽 ∈ Top → ( ∀ 𝑥 ∈ 𝑆 𝑆 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) → ( 𝑆 ⊆ ∪ 𝐽 → 𝑆 ∈ 𝐽 ) ) ) |
| 49 | 48 | adantr | ⊢ ( ( 𝐽 ∈ Top ∧ ¬ 𝑆 = ∅ ) → ( ∀ 𝑥 ∈ 𝑆 𝑆 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) → ( 𝑆 ⊆ ∪ 𝐽 → 𝑆 ∈ 𝐽 ) ) ) |
| 50 | 22 49 | mpdd | ⊢ ( ( 𝐽 ∈ Top ∧ ¬ 𝑆 = ∅ ) → ( ∀ 𝑥 ∈ 𝑆 𝑆 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) → 𝑆 ∈ 𝐽 ) ) |
| 51 | 13 50 | impbid | ⊢ ( ( 𝐽 ∈ Top ∧ ¬ 𝑆 = ∅ ) → ( 𝑆 ∈ 𝐽 ↔ ∀ 𝑥 ∈ 𝑆 𝑆 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) ) |
| 52 | 8 51 | pm2.61dan | ⊢ ( 𝐽 ∈ Top → ( 𝑆 ∈ 𝐽 ↔ ∀ 𝑥 ∈ 𝑆 𝑆 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) ) |