This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Contraposition law for strict ordering in orthoposets. ( chsscon1 analog.) (Contributed by NM, 6-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opcon3.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| opcon3.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| opcon3.o | ⊢ ⊥ = ( oc ‘ 𝐾 ) | ||
| Assertion | oplecon1b | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑋 ) ≤ 𝑌 ↔ ( ⊥ ‘ 𝑌 ) ≤ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opcon3.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | opcon3.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | opcon3.o | ⊢ ⊥ = ( oc ‘ 𝐾 ) | |
| 4 | 1 3 | opoccl | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ) |
| 5 | 4 | 3adant3 | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ) |
| 6 | 1 2 3 | oplecon3b | ⊢ ( ( 𝐾 ∈ OP ∧ ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑋 ) ≤ 𝑌 ↔ ( ⊥ ‘ 𝑌 ) ≤ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) ) |
| 7 | 5 6 | syld3an2 | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑋 ) ≤ 𝑌 ↔ ( ⊥ ‘ 𝑌 ) ≤ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) ) |
| 8 | 1 3 | opococ | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) |
| 9 | 8 | 3adant3 | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) |
| 10 | 9 | breq2d | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑌 ) ≤ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ↔ ( ⊥ ‘ 𝑌 ) ≤ 𝑋 ) ) |
| 11 | 7 10 | bitrd | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑋 ) ≤ 𝑌 ↔ ( ⊥ ‘ 𝑌 ) ≤ 𝑋 ) ) |