This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hilbert lattice contraposition law. (Contributed by NM, 21-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chsscon1 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ( ⊥ ‘ 𝐴 ) ⊆ 𝐵 ↔ ( ⊥ ‘ 𝐵 ) ⊆ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | choccl | ⊢ ( 𝐴 ∈ Cℋ → ( ⊥ ‘ 𝐴 ) ∈ Cℋ ) | |
| 2 | chsscon3 | ⊢ ( ( ( ⊥ ‘ 𝐴 ) ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ( ⊥ ‘ 𝐴 ) ⊆ 𝐵 ↔ ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) ) | |
| 3 | 1 2 | sylan | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ( ⊥ ‘ 𝐴 ) ⊆ 𝐵 ↔ ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) ) |
| 4 | ococ | ⊢ ( 𝐴 ∈ Cℋ → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) = 𝐴 ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) = 𝐴 ) |
| 6 | 5 | sseq2d | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ↔ ( ⊥ ‘ 𝐵 ) ⊆ 𝐴 ) ) |
| 7 | 3 6 | bitrd | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ( ⊥ ‘ 𝐴 ) ⊆ 𝐵 ↔ ( ⊥ ‘ 𝐵 ) ⊆ 𝐴 ) ) |