This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties of an ordered pair with a finite first component with at least L elements, proven by finite induction on the size of the first component. This theorem can be applied for graphs (represented as ordered pairs of vertices and edges) with a finite number of vertices, usually with L = 0 (see opfi1ind ) or L = 1 . (Contributed by AV, 22-Oct-2020) (Revised by AV, 28-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opfi1uzind.e | ||
| opfi1uzind.f | |||
| opfi1uzind.l | |||
| opfi1uzind.1 | |||
| opfi1uzind.2 | |||
| opfi1uzind.3 | |||
| opfi1uzind.4 | |||
| opfi1uzind.base | |||
| opfi1uzind.step | |||
| Assertion | opfi1uzind |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opfi1uzind.e | ||
| 2 | opfi1uzind.f | ||
| 3 | opfi1uzind.l | ||
| 4 | opfi1uzind.1 | ||
| 5 | opfi1uzind.2 | ||
| 6 | opfi1uzind.3 | ||
| 7 | opfi1uzind.4 | ||
| 8 | opfi1uzind.base | ||
| 9 | opfi1uzind.step | ||
| 10 | 1 | a1i | |
| 11 | opeq12 | ||
| 12 | 11 | eleq1d | |
| 13 | 10 12 | sbcied | |
| 14 | 13 | sbcieg | |
| 15 | 14 | biimparc | |
| 16 | 15 | 3adant3 | |
| 17 | vex | ||
| 18 | vex | ||
| 19 | opeq12 | ||
| 20 | 19 | eleq1d | |
| 21 | 17 18 20 | sbc2ie | |
| 22 | 21 6 | sylanb | |
| 23 | 17 | difexi | |
| 24 | opeq12 | ||
| 25 | 24 | eleq1d | |
| 26 | 23 2 25 | sbc2ie | |
| 27 | 22 26 | sylibr | |
| 28 | 21 8 | sylanb | |
| 29 | 21 | 3anbi1i | |
| 30 | 29 | anbi2i | |
| 31 | 30 9 | sylanb | |
| 32 | 2 3 4 5 27 7 28 31 | fi1uzind | |
| 33 | 16 32 | syld3an1 |