This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate way of saying that an ordered pair is in a composition. (Contributed by Scott Fenton, 6-May-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | opelco3 | |- ( <. A , B >. e. ( C o. D ) <-> B e. ( C " ( D " { A } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br | |- ( A ( C o. D ) B <-> <. A , B >. e. ( C o. D ) ) |
|
| 2 | relco | |- Rel ( C o. D ) |
|
| 3 | 2 | brrelex12i | |- ( A ( C o. D ) B -> ( A e. _V /\ B e. _V ) ) |
| 4 | snprc | |- ( -. A e. _V <-> { A } = (/) ) |
|
| 5 | noel | |- -. B e. (/) |
|
| 6 | imaeq2 | |- ( { A } = (/) -> ( D " { A } ) = ( D " (/) ) ) |
|
| 7 | 6 | imaeq2d | |- ( { A } = (/) -> ( C " ( D " { A } ) ) = ( C " ( D " (/) ) ) ) |
| 8 | ima0 | |- ( D " (/) ) = (/) |
|
| 9 | 8 | imaeq2i | |- ( C " ( D " (/) ) ) = ( C " (/) ) |
| 10 | ima0 | |- ( C " (/) ) = (/) |
|
| 11 | 9 10 | eqtri | |- ( C " ( D " (/) ) ) = (/) |
| 12 | 7 11 | eqtrdi | |- ( { A } = (/) -> ( C " ( D " { A } ) ) = (/) ) |
| 13 | 12 | eleq2d | |- ( { A } = (/) -> ( B e. ( C " ( D " { A } ) ) <-> B e. (/) ) ) |
| 14 | 5 13 | mtbiri | |- ( { A } = (/) -> -. B e. ( C " ( D " { A } ) ) ) |
| 15 | 4 14 | sylbi | |- ( -. A e. _V -> -. B e. ( C " ( D " { A } ) ) ) |
| 16 | 15 | con4i | |- ( B e. ( C " ( D " { A } ) ) -> A e. _V ) |
| 17 | elex | |- ( B e. ( C " ( D " { A } ) ) -> B e. _V ) |
|
| 18 | 16 17 | jca | |- ( B e. ( C " ( D " { A } ) ) -> ( A e. _V /\ B e. _V ) ) |
| 19 | df-rex | |- ( E. z e. ( D " { A } ) z C B <-> E. z ( z e. ( D " { A } ) /\ z C B ) ) |
|
| 20 | elimasng | |- ( ( A e. _V /\ z e. _V ) -> ( z e. ( D " { A } ) <-> <. A , z >. e. D ) ) |
|
| 21 | 20 | elvd | |- ( A e. _V -> ( z e. ( D " { A } ) <-> <. A , z >. e. D ) ) |
| 22 | df-br | |- ( A D z <-> <. A , z >. e. D ) |
|
| 23 | 21 22 | bitr4di | |- ( A e. _V -> ( z e. ( D " { A } ) <-> A D z ) ) |
| 24 | 23 | adantr | |- ( ( A e. _V /\ B e. _V ) -> ( z e. ( D " { A } ) <-> A D z ) ) |
| 25 | 24 | anbi1d | |- ( ( A e. _V /\ B e. _V ) -> ( ( z e. ( D " { A } ) /\ z C B ) <-> ( A D z /\ z C B ) ) ) |
| 26 | 25 | exbidv | |- ( ( A e. _V /\ B e. _V ) -> ( E. z ( z e. ( D " { A } ) /\ z C B ) <-> E. z ( A D z /\ z C B ) ) ) |
| 27 | 19 26 | bitr2id | |- ( ( A e. _V /\ B e. _V ) -> ( E. z ( A D z /\ z C B ) <-> E. z e. ( D " { A } ) z C B ) ) |
| 28 | brcog | |- ( ( A e. _V /\ B e. _V ) -> ( A ( C o. D ) B <-> E. z ( A D z /\ z C B ) ) ) |
|
| 29 | elimag | |- ( B e. _V -> ( B e. ( C " ( D " { A } ) ) <-> E. z e. ( D " { A } ) z C B ) ) |
|
| 30 | 29 | adantl | |- ( ( A e. _V /\ B e. _V ) -> ( B e. ( C " ( D " { A } ) ) <-> E. z e. ( D " { A } ) z C B ) ) |
| 31 | 27 28 30 | 3bitr4d | |- ( ( A e. _V /\ B e. _V ) -> ( A ( C o. D ) B <-> B e. ( C " ( D " { A } ) ) ) ) |
| 32 | 3 18 31 | pm5.21nii | |- ( A ( C o. D ) B <-> B e. ( C " ( D " { A } ) ) ) |
| 33 | 1 32 | bitr3i | |- ( <. A , B >. e. ( C o. D ) <-> B e. ( C " ( D " { A } ) ) ) |