This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define a function whose value is "the unique y such that ph ( x , y ) ". (Contributed by NM, 19-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | opabiota.1 | ⊢ 𝐹 = { 〈 𝑥 , 𝑦 〉 ∣ { 𝑦 ∣ 𝜑 } = { 𝑦 } } | |
| Assertion | opabiotafun | ⊢ Fun 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opabiota.1 | ⊢ 𝐹 = { 〈 𝑥 , 𝑦 〉 ∣ { 𝑦 ∣ 𝜑 } = { 𝑦 } } | |
| 2 | funopab | ⊢ ( Fun { 〈 𝑥 , 𝑦 〉 ∣ { 𝑦 ∣ 𝜑 } = { 𝑦 } } ↔ ∀ 𝑥 ∃* 𝑦 { 𝑦 ∣ 𝜑 } = { 𝑦 } ) | |
| 3 | mo2icl | ⊢ ( ∀ 𝑧 ( { 𝑦 ∣ 𝜑 } = { 𝑧 } → 𝑧 = ∪ { 𝑦 ∣ 𝜑 } ) → ∃* 𝑧 { 𝑦 ∣ 𝜑 } = { 𝑧 } ) | |
| 4 | unieq | ⊢ ( { 𝑦 ∣ 𝜑 } = { 𝑧 } → ∪ { 𝑦 ∣ 𝜑 } = ∪ { 𝑧 } ) | |
| 5 | unisnv | ⊢ ∪ { 𝑧 } = 𝑧 | |
| 6 | 4 5 | eqtr2di | ⊢ ( { 𝑦 ∣ 𝜑 } = { 𝑧 } → 𝑧 = ∪ { 𝑦 ∣ 𝜑 } ) |
| 7 | 3 6 | mpg | ⊢ ∃* 𝑧 { 𝑦 ∣ 𝜑 } = { 𝑧 } |
| 8 | nfv | ⊢ Ⅎ 𝑧 { 𝑦 ∣ 𝜑 } = { 𝑦 } | |
| 9 | nfab1 | ⊢ Ⅎ 𝑦 { 𝑦 ∣ 𝜑 } | |
| 10 | 9 | nfeq1 | ⊢ Ⅎ 𝑦 { 𝑦 ∣ 𝜑 } = { 𝑧 } |
| 11 | sneq | ⊢ ( 𝑦 = 𝑧 → { 𝑦 } = { 𝑧 } ) | |
| 12 | 11 | eqeq2d | ⊢ ( 𝑦 = 𝑧 → ( { 𝑦 ∣ 𝜑 } = { 𝑦 } ↔ { 𝑦 ∣ 𝜑 } = { 𝑧 } ) ) |
| 13 | 8 10 12 | cbvmow | ⊢ ( ∃* 𝑦 { 𝑦 ∣ 𝜑 } = { 𝑦 } ↔ ∃* 𝑧 { 𝑦 ∣ 𝜑 } = { 𝑧 } ) |
| 14 | 7 13 | mpbir | ⊢ ∃* 𝑦 { 𝑦 ∣ 𝜑 } = { 𝑦 } |
| 15 | 2 14 | mpgbir | ⊢ Fun { 〈 𝑥 , 𝑦 〉 ∣ { 𝑦 ∣ 𝜑 } = { 𝑦 } } |
| 16 | 1 | funeqi | ⊢ ( Fun 𝐹 ↔ Fun { 〈 𝑥 , 𝑦 〉 ∣ { 𝑦 ∣ 𝜑 } = { 𝑦 } } ) |
| 17 | 15 16 | mpbir | ⊢ Fun 𝐹 |