This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the orthoposet unity is less than or equal to an element, the element equals the unit. ( chle0 analog.) (Contributed by NM, 5-Dec-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ople1.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| ople1.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| ople1.u | ⊢ 1 = ( 1. ‘ 𝐾 ) | ||
| Assertion | op1le | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( 1 ≤ 𝑋 ↔ 𝑋 = 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ople1.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | ople1.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | ople1.u | ⊢ 1 = ( 1. ‘ 𝐾 ) | |
| 4 | 1 2 3 | ople1 | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ≤ 1 ) |
| 5 | 4 | biantrurd | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( 1 ≤ 𝑋 ↔ ( 𝑋 ≤ 1 ∧ 1 ≤ 𝑋 ) ) ) |
| 6 | opposet | ⊢ ( 𝐾 ∈ OP → 𝐾 ∈ Poset ) | |
| 7 | 6 | adantr | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → 𝐾 ∈ Poset ) |
| 8 | simpr | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 9 | 1 3 | op1cl | ⊢ ( 𝐾 ∈ OP → 1 ∈ 𝐵 ) |
| 10 | 9 | adantr | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → 1 ∈ 𝐵 ) |
| 11 | 1 2 | posasymb | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 1 ∈ 𝐵 ) → ( ( 𝑋 ≤ 1 ∧ 1 ≤ 𝑋 ) ↔ 𝑋 = 1 ) ) |
| 12 | 7 8 10 11 | syl3anc | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑋 ≤ 1 ∧ 1 ≤ 𝑋 ) ↔ 𝑋 = 1 ) ) |
| 13 | 5 12 | bitrd | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( 1 ≤ 𝑋 ↔ 𝑋 = 1 ) ) |