This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the orthoposet unity is less than or equal to an element, the element equals the unit. ( chle0 analog.) (Contributed by NM, 5-Dec-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ople1.b | |- B = ( Base ` K ) |
|
| ople1.l | |- .<_ = ( le ` K ) |
||
| ople1.u | |- .1. = ( 1. ` K ) |
||
| Assertion | op1le | |- ( ( K e. OP /\ X e. B ) -> ( .1. .<_ X <-> X = .1. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ople1.b | |- B = ( Base ` K ) |
|
| 2 | ople1.l | |- .<_ = ( le ` K ) |
|
| 3 | ople1.u | |- .1. = ( 1. ` K ) |
|
| 4 | 1 2 3 | ople1 | |- ( ( K e. OP /\ X e. B ) -> X .<_ .1. ) |
| 5 | 4 | biantrurd | |- ( ( K e. OP /\ X e. B ) -> ( .1. .<_ X <-> ( X .<_ .1. /\ .1. .<_ X ) ) ) |
| 6 | opposet | |- ( K e. OP -> K e. Poset ) |
|
| 7 | 6 | adantr | |- ( ( K e. OP /\ X e. B ) -> K e. Poset ) |
| 8 | simpr | |- ( ( K e. OP /\ X e. B ) -> X e. B ) |
|
| 9 | 1 3 | op1cl | |- ( K e. OP -> .1. e. B ) |
| 10 | 9 | adantr | |- ( ( K e. OP /\ X e. B ) -> .1. e. B ) |
| 11 | 1 2 | posasymb | |- ( ( K e. Poset /\ X e. B /\ .1. e. B ) -> ( ( X .<_ .1. /\ .1. .<_ X ) <-> X = .1. ) ) |
| 12 | 7 8 10 11 | syl3anc | |- ( ( K e. OP /\ X e. B ) -> ( ( X .<_ .1. /\ .1. .<_ X ) <-> X = .1. ) ) |
| 13 | 5 12 | bitrd | |- ( ( K e. OP /\ X e. B ) -> ( .1. .<_ X <-> X = .1. ) ) |