This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a property is true for some ordinal number, it is true for a minimal ordinal number. This version uses implicit substitution. Theorem Schema 62 of Suppes p. 228. (Contributed by NM, 3-Oct-2003)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | onminsb.1 | ||
| onminsb.2 | |||
| Assertion | onminsb |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onminsb.1 | ||
| 2 | onminsb.2 | ||
| 3 | rabn0 | ||
| 4 | ssrab2 | ||
| 5 | onint | ||
| 6 | 4 5 | mpan | |
| 7 | 3 6 | sylbir | |
| 8 | nfrab1 | ||
| 9 | 8 | nfint | |
| 10 | nfcv | ||
| 11 | 9 10 1 2 | elrabf | |
| 12 | 11 | simprbi | |
| 13 | 7 12 | syl |