This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A theorem pertaining to the substitution for an existentially quantified variable when the substituted variable does not occur in the quantified wff. (Contributed by Alan Sare, 22-Jul-2012) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cbvexsv | ⊢ ( ∃ 𝑥 𝜑 ↔ ∃ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvrexsv | ⊢ ( ∃ 𝑥 ∈ V 𝜑 ↔ ∃ 𝑦 ∈ V [ 𝑦 / 𝑥 ] 𝜑 ) | |
| 2 | rexv | ⊢ ( ∃ 𝑥 ∈ V 𝜑 ↔ ∃ 𝑥 𝜑 ) | |
| 3 | rexv | ⊢ ( ∃ 𝑦 ∈ V [ 𝑦 / 𝑥 ] 𝜑 ↔ ∃ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) | |
| 4 | 1 2 3 | 3bitr3i | ⊢ ( ∃ 𝑥 𝜑 ↔ ∃ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) |