This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for onfrALT . (Contributed by Alan Sare, 22-Jul-2012) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onfrALTlem1 | ⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ∃ 𝑦 ∈ 𝑎 ( 𝑎 ∩ 𝑦 ) = ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.8a | ⊢ ( ( 𝑥 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ∃ 𝑥 ( 𝑥 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑥 ) = ∅ ) ) | |
| 2 | 1 | a1i | ⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ∃ 𝑥 ( 𝑥 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑥 ) = ∅ ) ) ) |
| 3 | cbvexsv | ⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑥 ) = ∅ ) ↔ ∃ 𝑦 [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑥 ) = ∅ ) ) | |
| 4 | 2 3 | imbitrdi | ⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ∃ 𝑦 [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑥 ) = ∅ ) ) ) |
| 5 | sbsbc | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑥 ) = ∅ ) ↔ [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑥 ) = ∅ ) ) | |
| 6 | onfrALTlem4 | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑥 ) = ∅ ) ↔ ( 𝑦 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑦 ) = ∅ ) ) | |
| 7 | 5 6 | bitri | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑥 ) = ∅ ) ↔ ( 𝑦 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑦 ) = ∅ ) ) |
| 8 | 7 | exbii | ⊢ ( ∃ 𝑦 [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑥 ) = ∅ ) ↔ ∃ 𝑦 ( 𝑦 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑦 ) = ∅ ) ) |
| 9 | 4 8 | imbitrdi | ⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ∃ 𝑦 ( 𝑦 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑦 ) = ∅ ) ) ) |
| 10 | df-rex | ⊢ ( ∃ 𝑦 ∈ 𝑎 ( 𝑎 ∩ 𝑦 ) = ∅ ↔ ∃ 𝑦 ( 𝑦 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑦 ) = ∅ ) ) | |
| 11 | 9 10 | imbitrrdi | ⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ∃ 𝑦 ∈ 𝑎 ( 𝑎 ∩ 𝑦 ) = ∅ ) ) |