This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for onfrALT . (Contributed by Alan Sare, 22-Jul-2012) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onfrALTlem1 | |- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ ( a i^i x ) = (/) ) -> E. y e. a ( a i^i y ) = (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.8a | |- ( ( x e. a /\ ( a i^i x ) = (/) ) -> E. x ( x e. a /\ ( a i^i x ) = (/) ) ) |
|
| 2 | 1 | a1i | |- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ ( a i^i x ) = (/) ) -> E. x ( x e. a /\ ( a i^i x ) = (/) ) ) ) |
| 3 | cbvexsv | |- ( E. x ( x e. a /\ ( a i^i x ) = (/) ) <-> E. y [ y / x ] ( x e. a /\ ( a i^i x ) = (/) ) ) |
|
| 4 | 2 3 | imbitrdi | |- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ ( a i^i x ) = (/) ) -> E. y [ y / x ] ( x e. a /\ ( a i^i x ) = (/) ) ) ) |
| 5 | sbsbc | |- ( [ y / x ] ( x e. a /\ ( a i^i x ) = (/) ) <-> [. y / x ]. ( x e. a /\ ( a i^i x ) = (/) ) ) |
|
| 6 | onfrALTlem4 | |- ( [. y / x ]. ( x e. a /\ ( a i^i x ) = (/) ) <-> ( y e. a /\ ( a i^i y ) = (/) ) ) |
|
| 7 | 5 6 | bitri | |- ( [ y / x ] ( x e. a /\ ( a i^i x ) = (/) ) <-> ( y e. a /\ ( a i^i y ) = (/) ) ) |
| 8 | 7 | exbii | |- ( E. y [ y / x ] ( x e. a /\ ( a i^i x ) = (/) ) <-> E. y ( y e. a /\ ( a i^i y ) = (/) ) ) |
| 9 | 4 8 | imbitrdi | |- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ ( a i^i x ) = (/) ) -> E. y ( y e. a /\ ( a i^i y ) = (/) ) ) ) |
| 10 | df-rex | |- ( E. y e. a ( a i^i y ) = (/) <-> E. y ( y e. a /\ ( a i^i y ) = (/) ) ) |
|
| 11 | 9 10 | imbitrrdi | |- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ ( a i^i x ) = (/) ) -> E. y e. a ( a i^i y ) = (/) ) ) |