This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordinal number is finite iff it is a natural number. Proposition 10.32 of TakeutiZaring p. 92. (Contributed by NM, 26-Jul-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onfin |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi | ||
| 2 | onomeneq | ||
| 3 | eleq1a | ||
| 4 | 3 | adantl | |
| 5 | 2 4 | sylbid | |
| 6 | 5 | rexlimdva | |
| 7 | enrefnn | ||
| 8 | breq2 | ||
| 9 | 8 | rspcev | |
| 10 | 7 9 | mpdan | |
| 11 | 6 10 | impbid1 | |
| 12 | 1 11 | bitrid |