This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition with successor. Theorem 4I(A2) of Enderton p. 79. (Note that this version of oasuc does not need Replacement.) (Contributed by Mario Carneiro, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onasuc | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( 𝐴 +o suc 𝐵 ) = suc ( 𝐴 +o 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frsuc | ⊢ ( 𝐵 ∈ ω → ( ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ↾ ω ) ‘ suc 𝐵 ) = ( ( 𝑥 ∈ V ↦ suc 𝑥 ) ‘ ( ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ↾ ω ) ‘ 𝐵 ) ) ) | |
| 2 | 1 | adantl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ↾ ω ) ‘ suc 𝐵 ) = ( ( 𝑥 ∈ V ↦ suc 𝑥 ) ‘ ( ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ↾ ω ) ‘ 𝐵 ) ) ) |
| 3 | peano2 | ⊢ ( 𝐵 ∈ ω → suc 𝐵 ∈ ω ) | |
| 4 | 3 | adantl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → suc 𝐵 ∈ ω ) |
| 5 | 4 | fvresd | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ↾ ω ) ‘ suc 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ suc 𝐵 ) ) |
| 6 | fvres | ⊢ ( 𝐵 ∈ ω → ( ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ↾ ω ) ‘ 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ 𝐵 ) ) | |
| 7 | 6 | adantl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ↾ ω ) ‘ 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ 𝐵 ) ) |
| 8 | 7 | fveq2d | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( ( 𝑥 ∈ V ↦ suc 𝑥 ) ‘ ( ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ↾ ω ) ‘ 𝐵 ) ) = ( ( 𝑥 ∈ V ↦ suc 𝑥 ) ‘ ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ 𝐵 ) ) ) |
| 9 | 2 5 8 | 3eqtr3d | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ suc 𝐵 ) = ( ( 𝑥 ∈ V ↦ suc 𝑥 ) ‘ ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ 𝐵 ) ) ) |
| 10 | nnon | ⊢ ( 𝐵 ∈ ω → 𝐵 ∈ On ) | |
| 11 | onsuc | ⊢ ( 𝐵 ∈ On → suc 𝐵 ∈ On ) | |
| 12 | 10 11 | syl | ⊢ ( 𝐵 ∈ ω → suc 𝐵 ∈ On ) |
| 13 | oav | ⊢ ( ( 𝐴 ∈ On ∧ suc 𝐵 ∈ On ) → ( 𝐴 +o suc 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ suc 𝐵 ) ) | |
| 14 | 12 13 | sylan2 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( 𝐴 +o suc 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ suc 𝐵 ) ) |
| 15 | ovex | ⊢ ( 𝐴 +o 𝐵 ) ∈ V | |
| 16 | suceq | ⊢ ( 𝑥 = ( 𝐴 +o 𝐵 ) → suc 𝑥 = suc ( 𝐴 +o 𝐵 ) ) | |
| 17 | eqid | ⊢ ( 𝑥 ∈ V ↦ suc 𝑥 ) = ( 𝑥 ∈ V ↦ suc 𝑥 ) | |
| 18 | 15 | sucex | ⊢ suc ( 𝐴 +o 𝐵 ) ∈ V |
| 19 | 16 17 18 | fvmpt | ⊢ ( ( 𝐴 +o 𝐵 ) ∈ V → ( ( 𝑥 ∈ V ↦ suc 𝑥 ) ‘ ( 𝐴 +o 𝐵 ) ) = suc ( 𝐴 +o 𝐵 ) ) |
| 20 | 15 19 | ax-mp | ⊢ ( ( 𝑥 ∈ V ↦ suc 𝑥 ) ‘ ( 𝐴 +o 𝐵 ) ) = suc ( 𝐴 +o 𝐵 ) |
| 21 | oav | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +o 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ 𝐵 ) ) | |
| 22 | 10 21 | sylan2 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( 𝐴 +o 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ 𝐵 ) ) |
| 23 | 22 | fveq2d | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( ( 𝑥 ∈ V ↦ suc 𝑥 ) ‘ ( 𝐴 +o 𝐵 ) ) = ( ( 𝑥 ∈ V ↦ suc 𝑥 ) ‘ ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ 𝐵 ) ) ) |
| 24 | 20 23 | eqtr3id | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → suc ( 𝐴 +o 𝐵 ) = ( ( 𝑥 ∈ V ↦ suc 𝑥 ) ‘ ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ 𝐵 ) ) ) |
| 25 | 9 14 24 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( 𝐴 +o suc 𝐵 ) = suc ( 𝐴 +o 𝐵 ) ) |