This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition with successor. Theorem 4I(A2) of Enderton p. 79. (Note that this version of oasuc does not need Replacement.) (Contributed by Mario Carneiro, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onasuc | |- ( ( A e. On /\ B e. _om ) -> ( A +o suc B ) = suc ( A +o B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frsuc | |- ( B e. _om -> ( ( rec ( ( x e. _V |-> suc x ) , A ) |` _om ) ` suc B ) = ( ( x e. _V |-> suc x ) ` ( ( rec ( ( x e. _V |-> suc x ) , A ) |` _om ) ` B ) ) ) |
|
| 2 | 1 | adantl | |- ( ( A e. On /\ B e. _om ) -> ( ( rec ( ( x e. _V |-> suc x ) , A ) |` _om ) ` suc B ) = ( ( x e. _V |-> suc x ) ` ( ( rec ( ( x e. _V |-> suc x ) , A ) |` _om ) ` B ) ) ) |
| 3 | peano2 | |- ( B e. _om -> suc B e. _om ) |
|
| 4 | 3 | adantl | |- ( ( A e. On /\ B e. _om ) -> suc B e. _om ) |
| 5 | 4 | fvresd | |- ( ( A e. On /\ B e. _om ) -> ( ( rec ( ( x e. _V |-> suc x ) , A ) |` _om ) ` suc B ) = ( rec ( ( x e. _V |-> suc x ) , A ) ` suc B ) ) |
| 6 | fvres | |- ( B e. _om -> ( ( rec ( ( x e. _V |-> suc x ) , A ) |` _om ) ` B ) = ( rec ( ( x e. _V |-> suc x ) , A ) ` B ) ) |
|
| 7 | 6 | adantl | |- ( ( A e. On /\ B e. _om ) -> ( ( rec ( ( x e. _V |-> suc x ) , A ) |` _om ) ` B ) = ( rec ( ( x e. _V |-> suc x ) , A ) ` B ) ) |
| 8 | 7 | fveq2d | |- ( ( A e. On /\ B e. _om ) -> ( ( x e. _V |-> suc x ) ` ( ( rec ( ( x e. _V |-> suc x ) , A ) |` _om ) ` B ) ) = ( ( x e. _V |-> suc x ) ` ( rec ( ( x e. _V |-> suc x ) , A ) ` B ) ) ) |
| 9 | 2 5 8 | 3eqtr3d | |- ( ( A e. On /\ B e. _om ) -> ( rec ( ( x e. _V |-> suc x ) , A ) ` suc B ) = ( ( x e. _V |-> suc x ) ` ( rec ( ( x e. _V |-> suc x ) , A ) ` B ) ) ) |
| 10 | nnon | |- ( B e. _om -> B e. On ) |
|
| 11 | onsuc | |- ( B e. On -> suc B e. On ) |
|
| 12 | 10 11 | syl | |- ( B e. _om -> suc B e. On ) |
| 13 | oav | |- ( ( A e. On /\ suc B e. On ) -> ( A +o suc B ) = ( rec ( ( x e. _V |-> suc x ) , A ) ` suc B ) ) |
|
| 14 | 12 13 | sylan2 | |- ( ( A e. On /\ B e. _om ) -> ( A +o suc B ) = ( rec ( ( x e. _V |-> suc x ) , A ) ` suc B ) ) |
| 15 | ovex | |- ( A +o B ) e. _V |
|
| 16 | suceq | |- ( x = ( A +o B ) -> suc x = suc ( A +o B ) ) |
|
| 17 | eqid | |- ( x e. _V |-> suc x ) = ( x e. _V |-> suc x ) |
|
| 18 | 15 | sucex | |- suc ( A +o B ) e. _V |
| 19 | 16 17 18 | fvmpt | |- ( ( A +o B ) e. _V -> ( ( x e. _V |-> suc x ) ` ( A +o B ) ) = suc ( A +o B ) ) |
| 20 | 15 19 | ax-mp | |- ( ( x e. _V |-> suc x ) ` ( A +o B ) ) = suc ( A +o B ) |
| 21 | oav | |- ( ( A e. On /\ B e. On ) -> ( A +o B ) = ( rec ( ( x e. _V |-> suc x ) , A ) ` B ) ) |
|
| 22 | 10 21 | sylan2 | |- ( ( A e. On /\ B e. _om ) -> ( A +o B ) = ( rec ( ( x e. _V |-> suc x ) , A ) ` B ) ) |
| 23 | 22 | fveq2d | |- ( ( A e. On /\ B e. _om ) -> ( ( x e. _V |-> suc x ) ` ( A +o B ) ) = ( ( x e. _V |-> suc x ) ` ( rec ( ( x e. _V |-> suc x ) , A ) ` B ) ) ) |
| 24 | 20 23 | eqtr3id | |- ( ( A e. On /\ B e. _om ) -> suc ( A +o B ) = ( ( x e. _V |-> suc x ) ` ( rec ( ( x e. _V |-> suc x ) , A ) ` B ) ) ) |
| 25 | 9 14 24 | 3eqtr4d | |- ( ( A e. On /\ B e. _om ) -> ( A +o suc B ) = suc ( A +o B ) ) |