This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of ordinal addition. (Contributed by NM, 3-May-1995) (Revised by Mario Carneiro, 8-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oav | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +o 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgeq2 | ⊢ ( 𝑦 = 𝐴 → rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝑦 ) = rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ) | |
| 2 | 1 | fveq1d | ⊢ ( 𝑦 = 𝐴 → ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝑦 ) ‘ 𝑧 ) = ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ 𝑧 ) ) |
| 3 | fveq2 | ⊢ ( 𝑧 = 𝐵 → ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ 𝑧 ) = ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ 𝐵 ) ) | |
| 4 | df-oadd | ⊢ +o = ( 𝑦 ∈ On , 𝑧 ∈ On ↦ ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝑦 ) ‘ 𝑧 ) ) | |
| 5 | fvex | ⊢ ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ 𝐵 ) ∈ V | |
| 6 | 2 3 4 5 | ovmpo | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +o 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ 𝐵 ) ) |