This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The class of natural numbers is a subclass of the class of non-limit ordinal numbers. Exercise 4 of TakeutiZaring p. 42. (Contributed by NM, 2-Nov-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | omssnlim | ⊢ ω ⊆ { 𝑥 ∈ On ∣ ¬ Lim 𝑥 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omsson | ⊢ ω ⊆ On | |
| 2 | nnlim | ⊢ ( 𝑥 ∈ ω → ¬ Lim 𝑥 ) | |
| 3 | 2 | rgen | ⊢ ∀ 𝑥 ∈ ω ¬ Lim 𝑥 |
| 4 | ssrab | ⊢ ( ω ⊆ { 𝑥 ∈ On ∣ ¬ Lim 𝑥 } ↔ ( ω ⊆ On ∧ ∀ 𝑥 ∈ ω ¬ Lim 𝑥 ) ) | |
| 5 | 1 3 4 | mpbir2an | ⊢ ω ⊆ { 𝑥 ∈ On ∣ ¬ Lim 𝑥 } |