This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
The natural numbers (i.e., finite ordinals)
omssnlim
Metamath Proof Explorer
Description: The class of natural numbers is a subclass of the class of non-limit
ordinal numbers. Exercise 4 of TakeutiZaring p. 42. (Contributed by NM , 2-Nov-2004) (Proof shortened by Andrew Salmon , 27-Aug-2011)
Ref
Expression
Assertion
omssnlim
⊢ ω ⊆ x ∈ On | ¬ Lim ⁡ x
Proof
Step
Hyp
Ref
Expression
1
omsson
⊢ ω ⊆ On
2
nnlim
⊢ x ∈ ω → ¬ Lim ⁡ x
3
2
rgen
⊢ ∀ x ∈ ω ¬ Lim ⁡ x
4
ssrab
⊢ ω ⊆ x ∈ On | ¬ Lim ⁡ x ↔ ω ⊆ On ∧ ∀ x ∈ ω ¬ Lim ⁡ x
5
1 3 4
mpbir2an
⊢ ω ⊆ x ∈ On | ¬ Lim ⁡ x