This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a right ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 3-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ogrpaddlt.0 | ||
| ogrpaddlt.1 | |||
| ogrpaddlt.2 | |||
| ogrpaddltrd.1 | |||
| ogrpaddltrd.2 | |||
| ogrpaddltrd.3 | |||
| ogrpaddltrd.4 | |||
| ogrpaddltrd.5 | |||
| ogrpaddltrd.6 | |||
| Assertion | ogrpaddltrd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ogrpaddlt.0 | ||
| 2 | ogrpaddlt.1 | ||
| 3 | ogrpaddlt.2 | ||
| 4 | ogrpaddltrd.1 | ||
| 5 | ogrpaddltrd.2 | ||
| 6 | ogrpaddltrd.3 | ||
| 7 | ogrpaddltrd.4 | ||
| 8 | ogrpaddltrd.5 | ||
| 9 | ogrpaddltrd.6 | ||
| 10 | eqid | ||
| 11 | 10 2 | oppglt | |
| 12 | 4 11 | syl | |
| 13 | 12 | breqd | |
| 14 | 9 13 | mpbid | |
| 15 | 10 1 | oppgbas | |
| 16 | eqid | ||
| 17 | eqid | ||
| 18 | 15 16 17 | ogrpaddlt | |
| 19 | 5 6 7 8 14 18 | syl131anc | |
| 20 | 3 10 17 | oppgplus | |
| 21 | 3 10 17 | oppgplus | |
| 22 | 19 20 21 | 3brtr3g | |
| 23 | 12 | breqd | |
| 24 | 22 23 | mpbird |