This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a right ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 3-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ogrpaddlt.0 | |- B = ( Base ` G ) |
|
| ogrpaddlt.1 | |- .< = ( lt ` G ) |
||
| ogrpaddlt.2 | |- .+ = ( +g ` G ) |
||
| ogrpaddltrd.1 | |- ( ph -> G e. V ) |
||
| ogrpaddltrd.2 | |- ( ph -> ( oppG ` G ) e. oGrp ) |
||
| ogrpaddltrd.3 | |- ( ph -> X e. B ) |
||
| ogrpaddltrd.4 | |- ( ph -> Y e. B ) |
||
| ogrpaddltrd.5 | |- ( ph -> Z e. B ) |
||
| ogrpaddltrd.6 | |- ( ph -> X .< Y ) |
||
| Assertion | ogrpaddltrd | |- ( ph -> ( Z .+ X ) .< ( Z .+ Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ogrpaddlt.0 | |- B = ( Base ` G ) |
|
| 2 | ogrpaddlt.1 | |- .< = ( lt ` G ) |
|
| 3 | ogrpaddlt.2 | |- .+ = ( +g ` G ) |
|
| 4 | ogrpaddltrd.1 | |- ( ph -> G e. V ) |
|
| 5 | ogrpaddltrd.2 | |- ( ph -> ( oppG ` G ) e. oGrp ) |
|
| 6 | ogrpaddltrd.3 | |- ( ph -> X e. B ) |
|
| 7 | ogrpaddltrd.4 | |- ( ph -> Y e. B ) |
|
| 8 | ogrpaddltrd.5 | |- ( ph -> Z e. B ) |
|
| 9 | ogrpaddltrd.6 | |- ( ph -> X .< Y ) |
|
| 10 | eqid | |- ( oppG ` G ) = ( oppG ` G ) |
|
| 11 | 10 2 | oppglt | |- ( G e. V -> .< = ( lt ` ( oppG ` G ) ) ) |
| 12 | 4 11 | syl | |- ( ph -> .< = ( lt ` ( oppG ` G ) ) ) |
| 13 | 12 | breqd | |- ( ph -> ( X .< Y <-> X ( lt ` ( oppG ` G ) ) Y ) ) |
| 14 | 9 13 | mpbid | |- ( ph -> X ( lt ` ( oppG ` G ) ) Y ) |
| 15 | 10 1 | oppgbas | |- B = ( Base ` ( oppG ` G ) ) |
| 16 | eqid | |- ( lt ` ( oppG ` G ) ) = ( lt ` ( oppG ` G ) ) |
|
| 17 | eqid | |- ( +g ` ( oppG ` G ) ) = ( +g ` ( oppG ` G ) ) |
|
| 18 | 15 16 17 | ogrpaddlt | |- ( ( ( oppG ` G ) e. oGrp /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X ( lt ` ( oppG ` G ) ) Y ) -> ( X ( +g ` ( oppG ` G ) ) Z ) ( lt ` ( oppG ` G ) ) ( Y ( +g ` ( oppG ` G ) ) Z ) ) |
| 19 | 5 6 7 8 14 18 | syl131anc | |- ( ph -> ( X ( +g ` ( oppG ` G ) ) Z ) ( lt ` ( oppG ` G ) ) ( Y ( +g ` ( oppG ` G ) ) Z ) ) |
| 20 | 3 10 17 | oppgplus | |- ( X ( +g ` ( oppG ` G ) ) Z ) = ( Z .+ X ) |
| 21 | 3 10 17 | oppgplus | |- ( Y ( +g ` ( oppG ` G ) ) Z ) = ( Z .+ Y ) |
| 22 | 19 20 21 | 3brtr3g | |- ( ph -> ( Z .+ X ) ( lt ` ( oppG ` G ) ) ( Z .+ Y ) ) |
| 23 | 12 | breqd | |- ( ph -> ( ( Z .+ X ) .< ( Z .+ Y ) <-> ( Z .+ X ) ( lt ` ( oppG ` G ) ) ( Z .+ Y ) ) ) |
| 24 | 22 23 | mpbird | |- ( ph -> ( Z .+ X ) .< ( Z .+ Y ) ) |