This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an ordered field, the ring unity is strictly positive. (Contributed by Thierry Arnoux, 21-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | orng0le1.1 | ||
| orng0le1.2 | |||
| ofld0lt1.3 | |||
| Assertion | ofldlt1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orng0le1.1 | ||
| 2 | orng0le1.2 | ||
| 3 | ofld0lt1.3 | ||
| 4 | isofld | ||
| 5 | 4 | simprbi | |
| 6 | eqid | ||
| 7 | 1 2 6 | orng0le1 | |
| 8 | 5 7 | syl | |
| 9 | ofldfld | ||
| 10 | isfld | ||
| 11 | 10 | simplbi | |
| 12 | 1 2 | drngunz | |
| 13 | 9 11 12 | 3syl | |
| 14 | 13 | necomd | |
| 15 | 1 | fvexi | |
| 16 | 2 | fvexi | |
| 17 | 6 3 | pltval | |
| 18 | 15 16 17 | mp3an23 | |
| 19 | 8 14 18 | mpbir2and |