This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the ordinal exponentiation operation. (Contributed by NM, 30-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-oexp | ⊢ ↑o = ( 𝑥 ∈ On , 𝑦 ∈ On ↦ if ( 𝑥 = ∅ , ( 1o ∖ 𝑦 ) , ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ·o 𝑥 ) ) , 1o ) ‘ 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | coe | ⊢ ↑o | |
| 1 | vx | ⊢ 𝑥 | |
| 2 | con0 | ⊢ On | |
| 3 | vy | ⊢ 𝑦 | |
| 4 | 1 | cv | ⊢ 𝑥 |
| 5 | c0 | ⊢ ∅ | |
| 6 | 4 5 | wceq | ⊢ 𝑥 = ∅ |
| 7 | c1o | ⊢ 1o | |
| 8 | 3 | cv | ⊢ 𝑦 |
| 9 | 7 8 | cdif | ⊢ ( 1o ∖ 𝑦 ) |
| 10 | vz | ⊢ 𝑧 | |
| 11 | cvv | ⊢ V | |
| 12 | 10 | cv | ⊢ 𝑧 |
| 13 | comu | ⊢ ·o | |
| 14 | 12 4 13 | co | ⊢ ( 𝑧 ·o 𝑥 ) |
| 15 | 10 11 14 | cmpt | ⊢ ( 𝑧 ∈ V ↦ ( 𝑧 ·o 𝑥 ) ) |
| 16 | 15 7 | crdg | ⊢ rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ·o 𝑥 ) ) , 1o ) |
| 17 | 8 16 | cfv | ⊢ ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ·o 𝑥 ) ) , 1o ) ‘ 𝑦 ) |
| 18 | 6 9 17 | cif | ⊢ if ( 𝑥 = ∅ , ( 1o ∖ 𝑦 ) , ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ·o 𝑥 ) ) , 1o ) ‘ 𝑦 ) ) |
| 19 | 1 3 2 2 18 | cmpo | ⊢ ( 𝑥 ∈ On , 𝑦 ∈ On ↦ if ( 𝑥 = ∅ , ( 1o ∖ 𝑦 ) , ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ·o 𝑥 ) ) , 1o ) ‘ 𝑦 ) ) ) |
| 20 | 0 19 | wceq | ⊢ ↑o = ( 𝑥 ∈ On , 𝑦 ∈ On ↦ if ( 𝑥 = ∅ , ( 1o ∖ 𝑦 ) , ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ·o 𝑥 ) ) , 1o ) ‘ 𝑦 ) ) ) |