This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Second substitution for the group order definition. (Contributed by Mario Carneiro, 13-Jul-2014) (Revised by Stefan O'Rear, 5-Sep-2015) (Revised by AV, 5-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odval.1 | |- X = ( Base ` G ) |
|
| odval.2 | |- .x. = ( .g ` G ) |
||
| odval.3 | |- .0. = ( 0g ` G ) |
||
| odval.4 | |- O = ( od ` G ) |
||
| odval.i | |- I = { y e. NN | ( y .x. A ) = .0. } |
||
| Assertion | odval | |- ( A e. X -> ( O ` A ) = if ( I = (/) , 0 , inf ( I , RR , < ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odval.1 | |- X = ( Base ` G ) |
|
| 2 | odval.2 | |- .x. = ( .g ` G ) |
|
| 3 | odval.3 | |- .0. = ( 0g ` G ) |
|
| 4 | odval.4 | |- O = ( od ` G ) |
|
| 5 | odval.i | |- I = { y e. NN | ( y .x. A ) = .0. } |
|
| 6 | oveq2 | |- ( x = A -> ( y .x. x ) = ( y .x. A ) ) |
|
| 7 | 6 | eqeq1d | |- ( x = A -> ( ( y .x. x ) = .0. <-> ( y .x. A ) = .0. ) ) |
| 8 | 7 | rabbidv | |- ( x = A -> { y e. NN | ( y .x. x ) = .0. } = { y e. NN | ( y .x. A ) = .0. } ) |
| 9 | 8 5 | eqtr4di | |- ( x = A -> { y e. NN | ( y .x. x ) = .0. } = I ) |
| 10 | 9 | csbeq1d | |- ( x = A -> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) = [_ I / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) |
| 11 | nnex | |- NN e. _V |
|
| 12 | 5 11 | rabex2 | |- I e. _V |
| 13 | eqeq1 | |- ( i = I -> ( i = (/) <-> I = (/) ) ) |
|
| 14 | infeq1 | |- ( i = I -> inf ( i , RR , < ) = inf ( I , RR , < ) ) |
|
| 15 | 13 14 | ifbieq2d | |- ( i = I -> if ( i = (/) , 0 , inf ( i , RR , < ) ) = if ( I = (/) , 0 , inf ( I , RR , < ) ) ) |
| 16 | 12 15 | csbie | |- [_ I / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) = if ( I = (/) , 0 , inf ( I , RR , < ) ) |
| 17 | 10 16 | eqtrdi | |- ( x = A -> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) = if ( I = (/) , 0 , inf ( I , RR , < ) ) ) |
| 18 | 1 2 3 4 | odfval | |- O = ( x e. X |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) |
| 19 | c0ex | |- 0 e. _V |
|
| 20 | ltso | |- < Or RR |
|
| 21 | 20 | infex | |- inf ( I , RR , < ) e. _V |
| 22 | 19 21 | ifex | |- if ( I = (/) , 0 , inf ( I , RR , < ) ) e. _V |
| 23 | 17 18 22 | fvmpt | |- ( A e. X -> ( O ` A ) = if ( I = (/) , 0 , inf ( I , RR , < ) ) ) |