This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the least upper bound function of a poset. (Contributed by NM, 12-Sep-2011) (Revised by NM, 6-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lubfval.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| lubfval.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| lubfval.u | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | ||
| lubfval.p | ⊢ ( 𝜓 ↔ ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ) | ||
| lubfval.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) | ||
| Assertion | lubfval | ⊢ ( 𝜑 → 𝑈 = ( ( 𝑠 ∈ 𝒫 𝐵 ↦ ( ℩ 𝑥 ∈ 𝐵 𝜓 ) ) ↾ { 𝑠 ∣ ∃! 𝑥 ∈ 𝐵 𝜓 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lubfval.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | lubfval.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | lubfval.u | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | |
| 4 | lubfval.p | ⊢ ( 𝜓 ↔ ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ) | |
| 5 | lubfval.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) | |
| 6 | elex | ⊢ ( 𝐾 ∈ 𝑉 → 𝐾 ∈ V ) | |
| 7 | fveq2 | ⊢ ( 𝑝 = 𝐾 → ( Base ‘ 𝑝 ) = ( Base ‘ 𝐾 ) ) | |
| 8 | 7 1 | eqtr4di | ⊢ ( 𝑝 = 𝐾 → ( Base ‘ 𝑝 ) = 𝐵 ) |
| 9 | 8 | pweqd | ⊢ ( 𝑝 = 𝐾 → 𝒫 ( Base ‘ 𝑝 ) = 𝒫 𝐵 ) |
| 10 | fveq2 | ⊢ ( 𝑝 = 𝐾 → ( le ‘ 𝑝 ) = ( le ‘ 𝐾 ) ) | |
| 11 | 10 2 | eqtr4di | ⊢ ( 𝑝 = 𝐾 → ( le ‘ 𝑝 ) = ≤ ) |
| 12 | 11 | breqd | ⊢ ( 𝑝 = 𝐾 → ( 𝑦 ( le ‘ 𝑝 ) 𝑥 ↔ 𝑦 ≤ 𝑥 ) ) |
| 13 | 12 | ralbidv | ⊢ ( 𝑝 = 𝐾 → ( ∀ 𝑦 ∈ 𝑠 𝑦 ( le ‘ 𝑝 ) 𝑥 ↔ ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ) ) |
| 14 | 11 | breqd | ⊢ ( 𝑝 = 𝐾 → ( 𝑦 ( le ‘ 𝑝 ) 𝑧 ↔ 𝑦 ≤ 𝑧 ) ) |
| 15 | 14 | ralbidv | ⊢ ( 𝑝 = 𝐾 → ( ∀ 𝑦 ∈ 𝑠 𝑦 ( le ‘ 𝑝 ) 𝑧 ↔ ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 ) ) |
| 16 | 11 | breqd | ⊢ ( 𝑝 = 𝐾 → ( 𝑥 ( le ‘ 𝑝 ) 𝑧 ↔ 𝑥 ≤ 𝑧 ) ) |
| 17 | 15 16 | imbi12d | ⊢ ( 𝑝 = 𝐾 → ( ( ∀ 𝑦 ∈ 𝑠 𝑦 ( le ‘ 𝑝 ) 𝑧 → 𝑥 ( le ‘ 𝑝 ) 𝑧 ) ↔ ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ) |
| 18 | 8 17 | raleqbidv | ⊢ ( 𝑝 = 𝐾 → ( ∀ 𝑧 ∈ ( Base ‘ 𝑝 ) ( ∀ 𝑦 ∈ 𝑠 𝑦 ( le ‘ 𝑝 ) 𝑧 → 𝑥 ( le ‘ 𝑝 ) 𝑧 ) ↔ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ) |
| 19 | 13 18 | anbi12d | ⊢ ( 𝑝 = 𝐾 → ( ( ∀ 𝑦 ∈ 𝑠 𝑦 ( le ‘ 𝑝 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑝 ) ( ∀ 𝑦 ∈ 𝑠 𝑦 ( le ‘ 𝑝 ) 𝑧 → 𝑥 ( le ‘ 𝑝 ) 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ) ) |
| 20 | 8 19 | riotaeqbidv | ⊢ ( 𝑝 = 𝐾 → ( ℩ 𝑥 ∈ ( Base ‘ 𝑝 ) ( ∀ 𝑦 ∈ 𝑠 𝑦 ( le ‘ 𝑝 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑝 ) ( ∀ 𝑦 ∈ 𝑠 𝑦 ( le ‘ 𝑝 ) 𝑧 → 𝑥 ( le ‘ 𝑝 ) 𝑧 ) ) ) = ( ℩ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ) ) |
| 21 | 9 20 | mpteq12dv | ⊢ ( 𝑝 = 𝐾 → ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑝 ) ↦ ( ℩ 𝑥 ∈ ( Base ‘ 𝑝 ) ( ∀ 𝑦 ∈ 𝑠 𝑦 ( le ‘ 𝑝 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑝 ) ( ∀ 𝑦 ∈ 𝑠 𝑦 ( le ‘ 𝑝 ) 𝑧 → 𝑥 ( le ‘ 𝑝 ) 𝑧 ) ) ) ) = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( ℩ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ) ) ) |
| 22 | 19 | reubidv | ⊢ ( 𝑝 = 𝐾 → ( ∃! 𝑥 ∈ ( Base ‘ 𝑝 ) ( ∀ 𝑦 ∈ 𝑠 𝑦 ( le ‘ 𝑝 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑝 ) ( ∀ 𝑦 ∈ 𝑠 𝑦 ( le ‘ 𝑝 ) 𝑧 → 𝑥 ( le ‘ 𝑝 ) 𝑧 ) ) ↔ ∃! 𝑥 ∈ ( Base ‘ 𝑝 ) ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ) ) |
| 23 | reueq1 | ⊢ ( ( Base ‘ 𝑝 ) = 𝐵 → ( ∃! 𝑥 ∈ ( Base ‘ 𝑝 ) ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ↔ ∃! 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ) ) | |
| 24 | 8 23 | syl | ⊢ ( 𝑝 = 𝐾 → ( ∃! 𝑥 ∈ ( Base ‘ 𝑝 ) ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ↔ ∃! 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ) ) |
| 25 | 22 24 | bitrd | ⊢ ( 𝑝 = 𝐾 → ( ∃! 𝑥 ∈ ( Base ‘ 𝑝 ) ( ∀ 𝑦 ∈ 𝑠 𝑦 ( le ‘ 𝑝 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑝 ) ( ∀ 𝑦 ∈ 𝑠 𝑦 ( le ‘ 𝑝 ) 𝑧 → 𝑥 ( le ‘ 𝑝 ) 𝑧 ) ) ↔ ∃! 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ) ) |
| 26 | 25 | abbidv | ⊢ ( 𝑝 = 𝐾 → { 𝑠 ∣ ∃! 𝑥 ∈ ( Base ‘ 𝑝 ) ( ∀ 𝑦 ∈ 𝑠 𝑦 ( le ‘ 𝑝 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑝 ) ( ∀ 𝑦 ∈ 𝑠 𝑦 ( le ‘ 𝑝 ) 𝑧 → 𝑥 ( le ‘ 𝑝 ) 𝑧 ) ) } = { 𝑠 ∣ ∃! 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) } ) |
| 27 | 21 26 | reseq12d | ⊢ ( 𝑝 = 𝐾 → ( ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑝 ) ↦ ( ℩ 𝑥 ∈ ( Base ‘ 𝑝 ) ( ∀ 𝑦 ∈ 𝑠 𝑦 ( le ‘ 𝑝 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑝 ) ( ∀ 𝑦 ∈ 𝑠 𝑦 ( le ‘ 𝑝 ) 𝑧 → 𝑥 ( le ‘ 𝑝 ) 𝑧 ) ) ) ) ↾ { 𝑠 ∣ ∃! 𝑥 ∈ ( Base ‘ 𝑝 ) ( ∀ 𝑦 ∈ 𝑠 𝑦 ( le ‘ 𝑝 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑝 ) ( ∀ 𝑦 ∈ 𝑠 𝑦 ( le ‘ 𝑝 ) 𝑧 → 𝑥 ( le ‘ 𝑝 ) 𝑧 ) ) } ) = ( ( 𝑠 ∈ 𝒫 𝐵 ↦ ( ℩ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ) ) ↾ { 𝑠 ∣ ∃! 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) } ) ) |
| 28 | df-lub | ⊢ lub = ( 𝑝 ∈ V ↦ ( ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑝 ) ↦ ( ℩ 𝑥 ∈ ( Base ‘ 𝑝 ) ( ∀ 𝑦 ∈ 𝑠 𝑦 ( le ‘ 𝑝 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑝 ) ( ∀ 𝑦 ∈ 𝑠 𝑦 ( le ‘ 𝑝 ) 𝑧 → 𝑥 ( le ‘ 𝑝 ) 𝑧 ) ) ) ) ↾ { 𝑠 ∣ ∃! 𝑥 ∈ ( Base ‘ 𝑝 ) ( ∀ 𝑦 ∈ 𝑠 𝑦 ( le ‘ 𝑝 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑝 ) ( ∀ 𝑦 ∈ 𝑠 𝑦 ( le ‘ 𝑝 ) 𝑧 → 𝑥 ( le ‘ 𝑝 ) 𝑧 ) ) } ) ) | |
| 29 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 30 | 29 | pwex | ⊢ 𝒫 𝐵 ∈ V |
| 31 | 30 | mptex | ⊢ ( 𝑠 ∈ 𝒫 𝐵 ↦ ( ℩ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ) ) ∈ V |
| 32 | 31 | resex | ⊢ ( ( 𝑠 ∈ 𝒫 𝐵 ↦ ( ℩ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ) ) ↾ { 𝑠 ∣ ∃! 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) } ) ∈ V |
| 33 | 27 28 32 | fvmpt | ⊢ ( 𝐾 ∈ V → ( lub ‘ 𝐾 ) = ( ( 𝑠 ∈ 𝒫 𝐵 ↦ ( ℩ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ) ) ↾ { 𝑠 ∣ ∃! 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) } ) ) |
| 34 | 4 | a1i | ⊢ ( 𝑥 ∈ 𝐵 → ( 𝜓 ↔ ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ) ) |
| 35 | 34 | riotabiia | ⊢ ( ℩ 𝑥 ∈ 𝐵 𝜓 ) = ( ℩ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ) |
| 36 | 35 | mpteq2i | ⊢ ( 𝑠 ∈ 𝒫 𝐵 ↦ ( ℩ 𝑥 ∈ 𝐵 𝜓 ) ) = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( ℩ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ) ) |
| 37 | 4 | reubii | ⊢ ( ∃! 𝑥 ∈ 𝐵 𝜓 ↔ ∃! 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ) |
| 38 | 37 | abbii | ⊢ { 𝑠 ∣ ∃! 𝑥 ∈ 𝐵 𝜓 } = { 𝑠 ∣ ∃! 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) } |
| 39 | 36 38 | reseq12i | ⊢ ( ( 𝑠 ∈ 𝒫 𝐵 ↦ ( ℩ 𝑥 ∈ 𝐵 𝜓 ) ) ↾ { 𝑠 ∣ ∃! 𝑥 ∈ 𝐵 𝜓 } ) = ( ( 𝑠 ∈ 𝒫 𝐵 ↦ ( ℩ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ) ) ↾ { 𝑠 ∣ ∃! 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) } ) |
| 40 | 33 3 39 | 3eqtr4g | ⊢ ( 𝐾 ∈ V → 𝑈 = ( ( 𝑠 ∈ 𝒫 𝐵 ↦ ( ℩ 𝑥 ∈ 𝐵 𝜓 ) ) ↾ { 𝑠 ∣ ∃! 𝑥 ∈ 𝐵 𝜓 } ) ) |
| 41 | 5 6 40 | 3syl | ⊢ ( 𝜑 → 𝑈 = ( ( 𝑠 ∈ 𝒫 𝐵 ↦ ( ℩ 𝑥 ∈ 𝐵 𝜓 ) ) ↾ { 𝑠 ∣ ∃! 𝑥 ∈ 𝐵 𝜓 } ) ) |