This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of orthogonal complement of a subset of Hilbert space. (Contributed by NM, 7-Aug-2000) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ocval | |- ( H C_ ~H -> ( _|_ ` H ) = { x e. ~H | A. y e. H ( x .ih y ) = 0 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hilex | |- ~H e. _V |
|
| 2 | 1 | elpw2 | |- ( H e. ~P ~H <-> H C_ ~H ) |
| 3 | raleq | |- ( z = H -> ( A. y e. z ( x .ih y ) = 0 <-> A. y e. H ( x .ih y ) = 0 ) ) |
|
| 4 | 3 | rabbidv | |- ( z = H -> { x e. ~H | A. y e. z ( x .ih y ) = 0 } = { x e. ~H | A. y e. H ( x .ih y ) = 0 } ) |
| 5 | df-oc | |- _|_ = ( z e. ~P ~H |-> { x e. ~H | A. y e. z ( x .ih y ) = 0 } ) |
|
| 6 | 1 | rabex | |- { x e. ~H | A. y e. H ( x .ih y ) = 0 } e. _V |
| 7 | 4 5 6 | fvmpt | |- ( H e. ~P ~H -> ( _|_ ` H ) = { x e. ~H | A. y e. H ( x .ih y ) = 0 } ) |
| 8 | 2 7 | sylbir | |- ( H C_ ~H -> ( _|_ ` H ) = { x e. ~H | A. y e. H ( x .ih y ) = 0 } ) |