This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfer eventual boundedness from a larger function to a smaller function. (Contributed by Mario Carneiro, 25-Sep-2014) (Proof shortened by Mario Carneiro, 26-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | o1le.1 | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) | |
| o1le.2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ) | ||
| o1le.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | ||
| o1le.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) | ||
| o1le.5 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥 ) ) → ( abs ‘ 𝐶 ) ≤ ( abs ‘ 𝐵 ) ) | ||
| Assertion | o1le | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝑂(1) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | o1le.1 | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) | |
| 2 | o1le.2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ) | |
| 3 | o1le.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
| 4 | o1le.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) | |
| 5 | o1le.5 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥 ) ) → ( abs ‘ 𝐶 ) ≤ ( abs ‘ 𝐵 ) ) | |
| 6 | 3 2 | o1mptrcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 7 | 6 | lo1o12 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ↔ ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐵 ) ) ∈ ≤𝑂(1) ) ) |
| 8 | 2 7 | mpbid | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐵 ) ) ∈ ≤𝑂(1) ) |
| 9 | fvexd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ 𝐵 ) ∈ V ) | |
| 10 | 4 | abscld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ 𝐶 ) ∈ ℝ ) |
| 11 | 1 8 9 10 5 | lo1le | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐶 ) ) ∈ ≤𝑂(1) ) |
| 12 | 4 | lo1o12 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝑂(1) ↔ ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐶 ) ) ∈ ≤𝑂(1) ) ) |
| 13 | 11 12 | mpbird | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝑂(1) ) |