This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfer eventual upper boundedness from a larger function to a smaller function. (Contributed by Mario Carneiro, 26-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lo1le.1 | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) | |
| lo1le.2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ) | ||
| lo1le.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | ||
| lo1le.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℝ ) | ||
| lo1le.5 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥 ) ) → 𝐶 ≤ 𝐵 ) | ||
| Assertion | lo1le | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ ≤𝑂(1) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lo1le.1 | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) | |
| 2 | lo1le.2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ) | |
| 3 | lo1le.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
| 4 | lo1le.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℝ ) | |
| 5 | lo1le.5 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥 ) ) → 𝐶 ≤ 𝐵 ) | |
| 6 | simpr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ ) | |
| 7 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝑀 ∈ ℝ ) |
| 8 | 6 7 | ifcld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → if ( 𝑀 ≤ 𝑦 , 𝑦 , 𝑀 ) ∈ ℝ ) |
| 9 | 1 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑥 ∈ 𝐴 ) ) → 𝑀 ∈ ℝ ) |
| 10 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑥 ∈ 𝐴 ) ) → 𝑦 ∈ ℝ ) | |
| 11 | 3 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) |
| 12 | dmmptg | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) | |
| 13 | 11 12 | syl | ⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) |
| 14 | lo1dm | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ) | |
| 15 | 2 14 | syl | ⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ) |
| 16 | 13 15 | eqsstrrd | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 17 | 16 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑥 ∈ 𝐴 ) ) → 𝐴 ⊆ ℝ ) |
| 18 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑥 ∈ 𝐴 ) ) → 𝑥 ∈ 𝐴 ) | |
| 19 | 17 18 | sseldd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑥 ∈ 𝐴 ) ) → 𝑥 ∈ ℝ ) |
| 20 | maxle | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( if ( 𝑀 ≤ 𝑦 , 𝑦 , 𝑀 ) ≤ 𝑥 ↔ ( 𝑀 ≤ 𝑥 ∧ 𝑦 ≤ 𝑥 ) ) ) | |
| 21 | 9 10 19 20 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑥 ∈ 𝐴 ) ) → ( if ( 𝑀 ≤ 𝑦 , 𝑦 , 𝑀 ) ≤ 𝑥 ↔ ( 𝑀 ≤ 𝑥 ∧ 𝑦 ≤ 𝑥 ) ) ) |
| 22 | simpr | ⊢ ( ( 𝑀 ≤ 𝑥 ∧ 𝑦 ≤ 𝑥 ) → 𝑦 ≤ 𝑥 ) | |
| 23 | 21 22 | biimtrdi | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑥 ∈ 𝐴 ) ) → ( if ( 𝑀 ≤ 𝑦 , 𝑦 , 𝑀 ) ≤ 𝑥 → 𝑦 ≤ 𝑥 ) ) |
| 24 | 23 | imim1d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑥 ∈ 𝐴 ) ) → ( ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) → ( if ( 𝑀 ≤ 𝑦 , 𝑦 , 𝑀 ) ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ) ) |
| 25 | 5 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥 ) ) → 𝐶 ≤ 𝐵 ) |
| 26 | 25 | adantrll | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( ( 𝑚 ∈ ℝ ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑀 ≤ 𝑥 ) ) → 𝐶 ≤ 𝐵 ) |
| 27 | simpl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝜑 ) | |
| 28 | simplr | ⊢ ( ( ( 𝑚 ∈ ℝ ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑀 ≤ 𝑥 ) → 𝑥 ∈ 𝐴 ) | |
| 29 | 27 28 4 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( ( 𝑚 ∈ ℝ ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑀 ≤ 𝑥 ) ) → 𝐶 ∈ ℝ ) |
| 30 | 3 2 | lo1mptrcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 31 | 27 28 30 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( ( 𝑚 ∈ ℝ ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑀 ≤ 𝑥 ) ) → 𝐵 ∈ ℝ ) |
| 32 | simprll | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( ( 𝑚 ∈ ℝ ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑀 ≤ 𝑥 ) ) → 𝑚 ∈ ℝ ) | |
| 33 | letr | ⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑚 ∈ ℝ ) → ( ( 𝐶 ≤ 𝐵 ∧ 𝐵 ≤ 𝑚 ) → 𝐶 ≤ 𝑚 ) ) | |
| 34 | 29 31 32 33 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( ( 𝑚 ∈ ℝ ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑀 ≤ 𝑥 ) ) → ( ( 𝐶 ≤ 𝐵 ∧ 𝐵 ≤ 𝑚 ) → 𝐶 ≤ 𝑚 ) ) |
| 35 | 26 34 | mpand | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( ( 𝑚 ∈ ℝ ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑀 ≤ 𝑥 ) ) → ( 𝐵 ≤ 𝑚 → 𝐶 ≤ 𝑚 ) ) |
| 36 | 35 | expr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑥 ∈ 𝐴 ) ) → ( 𝑀 ≤ 𝑥 → ( 𝐵 ≤ 𝑚 → 𝐶 ≤ 𝑚 ) ) ) |
| 37 | 36 | adantrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑥 ∈ 𝐴 ) ) → ( ( 𝑀 ≤ 𝑥 ∧ 𝑦 ≤ 𝑥 ) → ( 𝐵 ≤ 𝑚 → 𝐶 ≤ 𝑚 ) ) ) |
| 38 | 21 37 | sylbid | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑥 ∈ 𝐴 ) ) → ( if ( 𝑀 ≤ 𝑦 , 𝑦 , 𝑀 ) ≤ 𝑥 → ( 𝐵 ≤ 𝑚 → 𝐶 ≤ 𝑚 ) ) ) |
| 39 | 38 | a2d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑥 ∈ 𝐴 ) ) → ( ( if ( 𝑀 ≤ 𝑦 , 𝑦 , 𝑀 ) ≤ 𝑥 → 𝐵 ≤ 𝑚 ) → ( if ( 𝑀 ≤ 𝑦 , 𝑦 , 𝑀 ) ≤ 𝑥 → 𝐶 ≤ 𝑚 ) ) ) |
| 40 | 24 39 | syld | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑥 ∈ 𝐴 ) ) → ( ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) → ( if ( 𝑀 ≤ 𝑦 , 𝑦 , 𝑀 ) ≤ 𝑥 → 𝐶 ≤ 𝑚 ) ) ) |
| 41 | 40 | anassrs | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑚 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) → ( if ( 𝑀 ≤ 𝑦 , 𝑦 , 𝑀 ) ≤ 𝑥 → 𝐶 ≤ 𝑚 ) ) ) |
| 42 | 41 | ralimdva | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑚 ∈ ℝ ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) → ∀ 𝑥 ∈ 𝐴 ( if ( 𝑀 ≤ 𝑦 , 𝑦 , 𝑀 ) ≤ 𝑥 → 𝐶 ≤ 𝑚 ) ) ) |
| 43 | 42 | reximdva | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) → ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( if ( 𝑀 ≤ 𝑦 , 𝑦 , 𝑀 ) ≤ 𝑥 → 𝐶 ≤ 𝑚 ) ) ) |
| 44 | breq1 | ⊢ ( 𝑧 = if ( 𝑀 ≤ 𝑦 , 𝑦 , 𝑀 ) → ( 𝑧 ≤ 𝑥 ↔ if ( 𝑀 ≤ 𝑦 , 𝑦 , 𝑀 ) ≤ 𝑥 ) ) | |
| 45 | 44 | imbi1d | ⊢ ( 𝑧 = if ( 𝑀 ≤ 𝑦 , 𝑦 , 𝑀 ) → ( ( 𝑧 ≤ 𝑥 → 𝐶 ≤ 𝑚 ) ↔ ( if ( 𝑀 ≤ 𝑦 , 𝑦 , 𝑀 ) ≤ 𝑥 → 𝐶 ≤ 𝑚 ) ) ) |
| 46 | 45 | rexralbidv | ⊢ ( 𝑧 = if ( 𝑀 ≤ 𝑦 , 𝑦 , 𝑀 ) → ( ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑧 ≤ 𝑥 → 𝐶 ≤ 𝑚 ) ↔ ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( if ( 𝑀 ≤ 𝑦 , 𝑦 , 𝑀 ) ≤ 𝑥 → 𝐶 ≤ 𝑚 ) ) ) |
| 47 | 46 | rspcev | ⊢ ( ( if ( 𝑀 ≤ 𝑦 , 𝑦 , 𝑀 ) ∈ ℝ ∧ ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( if ( 𝑀 ≤ 𝑦 , 𝑦 , 𝑀 ) ≤ 𝑥 → 𝐶 ≤ 𝑚 ) ) → ∃ 𝑧 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑧 ≤ 𝑥 → 𝐶 ≤ 𝑚 ) ) |
| 48 | 8 43 47 | syl6an | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) → ∃ 𝑧 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑧 ≤ 𝑥 → 𝐶 ≤ 𝑚 ) ) ) |
| 49 | 48 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) → ∃ 𝑧 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑧 ≤ 𝑥 → 𝐶 ≤ 𝑚 ) ) ) |
| 50 | 16 30 | ello1mpt | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ↔ ∃ 𝑦 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ) ) |
| 51 | 16 4 | ello1mpt | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ ≤𝑂(1) ↔ ∃ 𝑧 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑧 ≤ 𝑥 → 𝐶 ≤ 𝑚 ) ) ) |
| 52 | 49 50 51 | 3imtr4d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ ≤𝑂(1) ) ) |
| 53 | 2 52 | mpd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ ≤𝑂(1) ) |