This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfer eventual boundedness from a larger function to a smaller function. (Contributed by Mario Carneiro, 25-Sep-2014) (Proof shortened by Mario Carneiro, 26-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | o1le.1 | |- ( ph -> M e. RR ) |
|
| o1le.2 | |- ( ph -> ( x e. A |-> B ) e. O(1) ) |
||
| o1le.3 | |- ( ( ph /\ x e. A ) -> B e. V ) |
||
| o1le.4 | |- ( ( ph /\ x e. A ) -> C e. CC ) |
||
| o1le.5 | |- ( ( ph /\ ( x e. A /\ M <_ x ) ) -> ( abs ` C ) <_ ( abs ` B ) ) |
||
| Assertion | o1le | |- ( ph -> ( x e. A |-> C ) e. O(1) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | o1le.1 | |- ( ph -> M e. RR ) |
|
| 2 | o1le.2 | |- ( ph -> ( x e. A |-> B ) e. O(1) ) |
|
| 3 | o1le.3 | |- ( ( ph /\ x e. A ) -> B e. V ) |
|
| 4 | o1le.4 | |- ( ( ph /\ x e. A ) -> C e. CC ) |
|
| 5 | o1le.5 | |- ( ( ph /\ ( x e. A /\ M <_ x ) ) -> ( abs ` C ) <_ ( abs ` B ) ) |
|
| 6 | 3 2 | o1mptrcl | |- ( ( ph /\ x e. A ) -> B e. CC ) |
| 7 | 6 | lo1o12 | |- ( ph -> ( ( x e. A |-> B ) e. O(1) <-> ( x e. A |-> ( abs ` B ) ) e. <_O(1) ) ) |
| 8 | 2 7 | mpbid | |- ( ph -> ( x e. A |-> ( abs ` B ) ) e. <_O(1) ) |
| 9 | fvexd | |- ( ( ph /\ x e. A ) -> ( abs ` B ) e. _V ) |
|
| 10 | 4 | abscld | |- ( ( ph /\ x e. A ) -> ( abs ` C ) e. RR ) |
| 11 | 1 8 9 10 5 | lo1le | |- ( ph -> ( x e. A |-> ( abs ` C ) ) e. <_O(1) ) |
| 12 | 4 | lo1o12 | |- ( ph -> ( ( x e. A |-> C ) e. O(1) <-> ( x e. A |-> ( abs ` C ) ) e. <_O(1) ) ) |
| 13 | 11 12 | mpbird | |- ( ph -> ( x e. A |-> C ) e. O(1) ) |