This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the difference of two functions is eventually bounded, eventual boundedness of either one implies the other. (Contributed by Mario Carneiro, 26-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | o1dif.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| o1dif.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) | ||
| o1dif.3 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 − 𝐶 ) ) ∈ 𝑂(1) ) | ||
| Assertion | o1dif | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝑂(1) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | o1dif.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| 2 | o1dif.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) | |
| 3 | o1dif.3 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 − 𝐶 ) ) ∈ 𝑂(1) ) | |
| 4 | o1sub | ⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ∧ ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 − 𝐶 ) ) ∈ 𝑂(1) ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∘f − ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 − 𝐶 ) ) ) ∈ 𝑂(1) ) | |
| 5 | 4 | expcom | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 − 𝐶 ) ) ∈ 𝑂(1) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∘f − ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 − 𝐶 ) ) ) ∈ 𝑂(1) ) ) |
| 6 | 3 5 | syl | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∘f − ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 − 𝐶 ) ) ) ∈ 𝑂(1) ) ) |
| 7 | 1 2 | subcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 − 𝐶 ) ∈ ℂ ) |
| 8 | 7 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝐵 − 𝐶 ) ∈ ℂ ) |
| 9 | dmmptg | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 − 𝐶 ) ∈ ℂ → dom ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 − 𝐶 ) ) = 𝐴 ) | |
| 10 | 8 9 | syl | ⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 − 𝐶 ) ) = 𝐴 ) |
| 11 | o1dm | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 − 𝐶 ) ) ∈ 𝑂(1) → dom ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 − 𝐶 ) ) ⊆ ℝ ) | |
| 12 | 3 11 | syl | ⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 − 𝐶 ) ) ⊆ ℝ ) |
| 13 | 10 12 | eqsstrrd | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 14 | reex | ⊢ ℝ ∈ V | |
| 15 | 14 | ssex | ⊢ ( 𝐴 ⊆ ℝ → 𝐴 ∈ V ) |
| 16 | 13 15 | syl | ⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 17 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) | |
| 18 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 − 𝐶 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 − 𝐶 ) ) ) | |
| 19 | 16 1 7 17 18 | offval2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∘f − ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 − 𝐶 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 − ( 𝐵 − 𝐶 ) ) ) ) |
| 20 | 1 2 | nncand | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 − ( 𝐵 − 𝐶 ) ) = 𝐶 ) |
| 21 | 20 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 − ( 𝐵 − 𝐶 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) |
| 22 | 19 21 | eqtrd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∘f − ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 − 𝐶 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) |
| 23 | 22 | eleq1d | ⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∘f − ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 − 𝐶 ) ) ) ∈ 𝑂(1) ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝑂(1) ) ) |
| 24 | 6 23 | sylibd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝑂(1) ) ) |
| 25 | o1add | ⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 − 𝐶 ) ) ∈ 𝑂(1) ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝑂(1) ) → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 − 𝐶 ) ) ∘f + ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) ∈ 𝑂(1) ) | |
| 26 | 25 | ex | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 − 𝐶 ) ) ∈ 𝑂(1) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝑂(1) → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 − 𝐶 ) ) ∘f + ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) ∈ 𝑂(1) ) ) |
| 27 | 3 26 | syl | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝑂(1) → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 − 𝐶 ) ) ∘f + ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) ∈ 𝑂(1) ) ) |
| 28 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) | |
| 29 | 16 7 2 18 28 | offval2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 − 𝐶 ) ) ∘f + ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ( 𝐵 − 𝐶 ) + 𝐶 ) ) ) |
| 30 | 1 2 | npcand | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐵 − 𝐶 ) + 𝐶 ) = 𝐵 ) |
| 31 | 30 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ( 𝐵 − 𝐶 ) + 𝐶 ) ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 32 | 29 31 | eqtrd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 − 𝐶 ) ) ∘f + ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 33 | 32 | eleq1d | ⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 − 𝐶 ) ) ∘f + ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) ∈ 𝑂(1) ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ) ) |
| 34 | 27 33 | sylibd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝑂(1) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ) ) |
| 35 | 24 34 | impbid | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝑂(1) ) ) |