This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the difference of two functions is eventually bounded, eventual boundedness of either one implies the other. (Contributed by Mario Carneiro, 26-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | o1dif.1 | |- ( ( ph /\ x e. A ) -> B e. CC ) |
|
| o1dif.2 | |- ( ( ph /\ x e. A ) -> C e. CC ) |
||
| o1dif.3 | |- ( ph -> ( x e. A |-> ( B - C ) ) e. O(1) ) |
||
| Assertion | o1dif | |- ( ph -> ( ( x e. A |-> B ) e. O(1) <-> ( x e. A |-> C ) e. O(1) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | o1dif.1 | |- ( ( ph /\ x e. A ) -> B e. CC ) |
|
| 2 | o1dif.2 | |- ( ( ph /\ x e. A ) -> C e. CC ) |
|
| 3 | o1dif.3 | |- ( ph -> ( x e. A |-> ( B - C ) ) e. O(1) ) |
|
| 4 | o1sub | |- ( ( ( x e. A |-> B ) e. O(1) /\ ( x e. A |-> ( B - C ) ) e. O(1) ) -> ( ( x e. A |-> B ) oF - ( x e. A |-> ( B - C ) ) ) e. O(1) ) |
|
| 5 | 4 | expcom | |- ( ( x e. A |-> ( B - C ) ) e. O(1) -> ( ( x e. A |-> B ) e. O(1) -> ( ( x e. A |-> B ) oF - ( x e. A |-> ( B - C ) ) ) e. O(1) ) ) |
| 6 | 3 5 | syl | |- ( ph -> ( ( x e. A |-> B ) e. O(1) -> ( ( x e. A |-> B ) oF - ( x e. A |-> ( B - C ) ) ) e. O(1) ) ) |
| 7 | 1 2 | subcld | |- ( ( ph /\ x e. A ) -> ( B - C ) e. CC ) |
| 8 | 7 | ralrimiva | |- ( ph -> A. x e. A ( B - C ) e. CC ) |
| 9 | dmmptg | |- ( A. x e. A ( B - C ) e. CC -> dom ( x e. A |-> ( B - C ) ) = A ) |
|
| 10 | 8 9 | syl | |- ( ph -> dom ( x e. A |-> ( B - C ) ) = A ) |
| 11 | o1dm | |- ( ( x e. A |-> ( B - C ) ) e. O(1) -> dom ( x e. A |-> ( B - C ) ) C_ RR ) |
|
| 12 | 3 11 | syl | |- ( ph -> dom ( x e. A |-> ( B - C ) ) C_ RR ) |
| 13 | 10 12 | eqsstrrd | |- ( ph -> A C_ RR ) |
| 14 | reex | |- RR e. _V |
|
| 15 | 14 | ssex | |- ( A C_ RR -> A e. _V ) |
| 16 | 13 15 | syl | |- ( ph -> A e. _V ) |
| 17 | eqidd | |- ( ph -> ( x e. A |-> B ) = ( x e. A |-> B ) ) |
|
| 18 | eqidd | |- ( ph -> ( x e. A |-> ( B - C ) ) = ( x e. A |-> ( B - C ) ) ) |
|
| 19 | 16 1 7 17 18 | offval2 | |- ( ph -> ( ( x e. A |-> B ) oF - ( x e. A |-> ( B - C ) ) ) = ( x e. A |-> ( B - ( B - C ) ) ) ) |
| 20 | 1 2 | nncand | |- ( ( ph /\ x e. A ) -> ( B - ( B - C ) ) = C ) |
| 21 | 20 | mpteq2dva | |- ( ph -> ( x e. A |-> ( B - ( B - C ) ) ) = ( x e. A |-> C ) ) |
| 22 | 19 21 | eqtrd | |- ( ph -> ( ( x e. A |-> B ) oF - ( x e. A |-> ( B - C ) ) ) = ( x e. A |-> C ) ) |
| 23 | 22 | eleq1d | |- ( ph -> ( ( ( x e. A |-> B ) oF - ( x e. A |-> ( B - C ) ) ) e. O(1) <-> ( x e. A |-> C ) e. O(1) ) ) |
| 24 | 6 23 | sylibd | |- ( ph -> ( ( x e. A |-> B ) e. O(1) -> ( x e. A |-> C ) e. O(1) ) ) |
| 25 | o1add | |- ( ( ( x e. A |-> ( B - C ) ) e. O(1) /\ ( x e. A |-> C ) e. O(1) ) -> ( ( x e. A |-> ( B - C ) ) oF + ( x e. A |-> C ) ) e. O(1) ) |
|
| 26 | 25 | ex | |- ( ( x e. A |-> ( B - C ) ) e. O(1) -> ( ( x e. A |-> C ) e. O(1) -> ( ( x e. A |-> ( B - C ) ) oF + ( x e. A |-> C ) ) e. O(1) ) ) |
| 27 | 3 26 | syl | |- ( ph -> ( ( x e. A |-> C ) e. O(1) -> ( ( x e. A |-> ( B - C ) ) oF + ( x e. A |-> C ) ) e. O(1) ) ) |
| 28 | eqidd | |- ( ph -> ( x e. A |-> C ) = ( x e. A |-> C ) ) |
|
| 29 | 16 7 2 18 28 | offval2 | |- ( ph -> ( ( x e. A |-> ( B - C ) ) oF + ( x e. A |-> C ) ) = ( x e. A |-> ( ( B - C ) + C ) ) ) |
| 30 | 1 2 | npcand | |- ( ( ph /\ x e. A ) -> ( ( B - C ) + C ) = B ) |
| 31 | 30 | mpteq2dva | |- ( ph -> ( x e. A |-> ( ( B - C ) + C ) ) = ( x e. A |-> B ) ) |
| 32 | 29 31 | eqtrd | |- ( ph -> ( ( x e. A |-> ( B - C ) ) oF + ( x e. A |-> C ) ) = ( x e. A |-> B ) ) |
| 33 | 32 | eleq1d | |- ( ph -> ( ( ( x e. A |-> ( B - C ) ) oF + ( x e. A |-> C ) ) e. O(1) <-> ( x e. A |-> B ) e. O(1) ) ) |
| 34 | 27 33 | sylibd | |- ( ph -> ( ( x e. A |-> C ) e. O(1) -> ( x e. A |-> B ) e. O(1) ) ) |
| 35 | 24 34 | impbid | |- ( ph -> ( ( x e. A |-> B ) e. O(1) <-> ( x e. A |-> C ) e. O(1) ) ) |