This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sufficient condition for transforming the index set of an eventually bounded function. (Contributed by Mario Carneiro, 12-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | o1co.1 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) | |
| o1co.2 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑂(1) ) | ||
| o1co.3 | ⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐴 ) | ||
| o1co.4 | ⊢ ( 𝜑 → 𝐵 ⊆ ℝ ) | ||
| o1co.5 | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → 𝑚 ≤ ( 𝐺 ‘ 𝑦 ) ) ) | ||
| Assertion | o1co | ⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) ∈ 𝑂(1) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | o1co.1 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) | |
| 2 | o1co.2 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑂(1) ) | |
| 3 | o1co.3 | ⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐴 ) | |
| 4 | o1co.4 | ⊢ ( 𝜑 → 𝐵 ⊆ ℝ ) | |
| 5 | o1co.5 | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → 𝑚 ≤ ( 𝐺 ‘ 𝑦 ) ) ) | |
| 6 | 1 | fdmd | ⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
| 7 | o1dm | ⊢ ( 𝐹 ∈ 𝑂(1) → dom 𝐹 ⊆ ℝ ) | |
| 8 | 2 7 | syl | ⊢ ( 𝜑 → dom 𝐹 ⊆ ℝ ) |
| 9 | 6 8 | eqsstrrd | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 10 | elo12 | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) → ( 𝐹 ∈ 𝑂(1) ↔ ∃ 𝑚 ∈ ℝ ∃ 𝑛 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑚 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑛 ) ) ) | |
| 11 | 1 9 10 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ∈ 𝑂(1) ↔ ∃ 𝑚 ∈ ℝ ∃ 𝑛 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑚 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑛 ) ) ) |
| 12 | 2 11 | mpbid | ⊢ ( 𝜑 → ∃ 𝑚 ∈ ℝ ∃ 𝑛 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑚 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑛 ) ) |
| 13 | reeanv | ⊢ ( ∃ 𝑥 ∈ ℝ ∃ 𝑛 ∈ ℝ ( ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → 𝑚 ≤ ( 𝐺 ‘ 𝑦 ) ) ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑚 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑛 ) ) ↔ ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → 𝑚 ≤ ( 𝐺 ‘ 𝑦 ) ) ∧ ∃ 𝑛 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑚 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑛 ) ) ) | |
| 14 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑛 ∈ ℝ ) → 𝐺 : 𝐵 ⟶ 𝐴 ) |
| 15 | 14 | ffvelcdmda | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑛 ∈ ℝ ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) |
| 16 | breq2 | ⊢ ( 𝑧 = ( 𝐺 ‘ 𝑦 ) → ( 𝑚 ≤ 𝑧 ↔ 𝑚 ≤ ( 𝐺 ‘ 𝑦 ) ) ) | |
| 17 | 2fveq3 | ⊢ ( 𝑧 = ( 𝐺 ‘ 𝑦 ) → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) = ( abs ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) | |
| 18 | 17 | breq1d | ⊢ ( 𝑧 = ( 𝐺 ‘ 𝑦 ) → ( ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑛 ↔ ( abs ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ≤ 𝑛 ) ) |
| 19 | 16 18 | imbi12d | ⊢ ( 𝑧 = ( 𝐺 ‘ 𝑦 ) → ( ( 𝑚 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑛 ) ↔ ( 𝑚 ≤ ( 𝐺 ‘ 𝑦 ) → ( abs ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ≤ 𝑛 ) ) ) |
| 20 | 19 | rspcva | ⊢ ( ( ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑚 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑛 ) ) → ( 𝑚 ≤ ( 𝐺 ‘ 𝑦 ) → ( abs ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ≤ 𝑛 ) ) |
| 21 | 15 20 | sylan | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑛 ∈ ℝ ) ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑚 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑛 ) ) → ( 𝑚 ≤ ( 𝐺 ‘ 𝑦 ) → ( abs ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ≤ 𝑛 ) ) |
| 22 | 21 | an32s | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑛 ∈ ℝ ) ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑚 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑚 ≤ ( 𝐺 ‘ 𝑦 ) → ( abs ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ≤ 𝑛 ) ) |
| 23 | 14 | adantr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑛 ∈ ℝ ) ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑚 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑛 ) ) → 𝐺 : 𝐵 ⟶ 𝐴 ) |
| 24 | fvco3 | ⊢ ( ( 𝐺 : 𝐵 ⟶ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) | |
| 25 | 23 24 | sylan | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑛 ∈ ℝ ) ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑚 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) |
| 26 | 25 | fveq2d | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑛 ∈ ℝ ) ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑚 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐵 ) → ( abs ‘ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) = ( abs ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 27 | 26 | breq1d | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑛 ∈ ℝ ) ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑚 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐵 ) → ( ( abs ‘ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) ≤ 𝑛 ↔ ( abs ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ≤ 𝑛 ) ) |
| 28 | 22 27 | sylibrd | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑛 ∈ ℝ ) ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑚 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑚 ≤ ( 𝐺 ‘ 𝑦 ) → ( abs ‘ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) ≤ 𝑛 ) ) |
| 29 | 28 | imim2d | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑛 ∈ ℝ ) ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑚 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑥 ≤ 𝑦 → 𝑚 ≤ ( 𝐺 ‘ 𝑦 ) ) → ( 𝑥 ≤ 𝑦 → ( abs ‘ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) ≤ 𝑛 ) ) ) |
| 30 | 29 | ralimdva | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑛 ∈ ℝ ) ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑚 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑛 ) ) → ( ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → 𝑚 ≤ ( 𝐺 ‘ 𝑦 ) ) → ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → ( abs ‘ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) ≤ 𝑛 ) ) ) |
| 31 | 30 | expimpd | ⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑛 ∈ ℝ ) → ( ( ∀ 𝑧 ∈ 𝐴 ( 𝑚 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑛 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → 𝑚 ≤ ( 𝐺 ‘ 𝑦 ) ) ) → ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → ( abs ‘ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) ≤ 𝑛 ) ) ) |
| 32 | 31 | ancomsd | ⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑛 ∈ ℝ ) → ( ( ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → 𝑚 ≤ ( 𝐺 ‘ 𝑦 ) ) ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑚 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑛 ) ) → ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → ( abs ‘ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) ≤ 𝑛 ) ) ) |
| 33 | 32 | reximdva | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( ∃ 𝑛 ∈ ℝ ( ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → 𝑚 ≤ ( 𝐺 ‘ 𝑦 ) ) ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑚 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑛 ) ) → ∃ 𝑛 ∈ ℝ ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → ( abs ‘ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) ≤ 𝑛 ) ) ) |
| 34 | 33 | reximdva | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) → ( ∃ 𝑥 ∈ ℝ ∃ 𝑛 ∈ ℝ ( ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → 𝑚 ≤ ( 𝐺 ‘ 𝑦 ) ) ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑚 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑛 ) ) → ∃ 𝑥 ∈ ℝ ∃ 𝑛 ∈ ℝ ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → ( abs ‘ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) ≤ 𝑛 ) ) ) |
| 35 | 13 34 | biimtrrid | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) → ( ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → 𝑚 ≤ ( 𝐺 ‘ 𝑦 ) ) ∧ ∃ 𝑛 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑚 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑛 ) ) → ∃ 𝑥 ∈ ℝ ∃ 𝑛 ∈ ℝ ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → ( abs ‘ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) ≤ 𝑛 ) ) ) |
| 36 | 5 35 | mpand | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) → ( ∃ 𝑛 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑚 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑛 ) → ∃ 𝑥 ∈ ℝ ∃ 𝑛 ∈ ℝ ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → ( abs ‘ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) ≤ 𝑛 ) ) ) |
| 37 | 36 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑚 ∈ ℝ ∃ 𝑛 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑚 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑛 ) → ∃ 𝑥 ∈ ℝ ∃ 𝑛 ∈ ℝ ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → ( abs ‘ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) ≤ 𝑛 ) ) ) |
| 38 | 12 37 | mpd | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∃ 𝑛 ∈ ℝ ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → ( abs ‘ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) ≤ 𝑛 ) ) |
| 39 | fco | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐵 ⟶ 𝐴 ) → ( 𝐹 ∘ 𝐺 ) : 𝐵 ⟶ ℂ ) | |
| 40 | 1 3 39 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) : 𝐵 ⟶ ℂ ) |
| 41 | elo12 | ⊢ ( ( ( 𝐹 ∘ 𝐺 ) : 𝐵 ⟶ ℂ ∧ 𝐵 ⊆ ℝ ) → ( ( 𝐹 ∘ 𝐺 ) ∈ 𝑂(1) ↔ ∃ 𝑥 ∈ ℝ ∃ 𝑛 ∈ ℝ ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → ( abs ‘ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) ≤ 𝑛 ) ) ) | |
| 42 | 40 4 41 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐹 ∘ 𝐺 ) ∈ 𝑂(1) ↔ ∃ 𝑥 ∈ ℝ ∃ 𝑛 ∈ ℝ ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → ( abs ‘ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) ≤ 𝑛 ) ) ) |
| 43 | 38 42 | mpbird | ⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) ∈ 𝑂(1) ) |