This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sufficient condition for transforming the index set of an eventually bounded function. (Contributed by Mario Carneiro, 12-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | o1compt.1 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) | |
| o1compt.2 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑂(1) ) | ||
| o1compt.3 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝐶 ∈ 𝐴 ) | ||
| o1compt.4 | ⊢ ( 𝜑 → 𝐵 ⊆ ℝ ) | ||
| o1compt.5 | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → 𝑚 ≤ 𝐶 ) ) | ||
| Assertion | o1compt | ⊢ ( 𝜑 → ( 𝐹 ∘ ( 𝑦 ∈ 𝐵 ↦ 𝐶 ) ) ∈ 𝑂(1) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | o1compt.1 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) | |
| 2 | o1compt.2 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑂(1) ) | |
| 3 | o1compt.3 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝐶 ∈ 𝐴 ) | |
| 4 | o1compt.4 | ⊢ ( 𝜑 → 𝐵 ⊆ ℝ ) | |
| 5 | o1compt.5 | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → 𝑚 ≤ 𝐶 ) ) | |
| 6 | 3 | fmpttd | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↦ 𝐶 ) : 𝐵 ⟶ 𝐴 ) |
| 7 | nfv | ⊢ Ⅎ 𝑦 𝑥 ≤ 𝑧 | |
| 8 | nfcv | ⊢ Ⅎ 𝑦 𝑚 | |
| 9 | nfcv | ⊢ Ⅎ 𝑦 ≤ | |
| 10 | nffvmpt1 | ⊢ Ⅎ 𝑦 ( ( 𝑦 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑧 ) | |
| 11 | 8 9 10 | nfbr | ⊢ Ⅎ 𝑦 𝑚 ≤ ( ( 𝑦 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑧 ) |
| 12 | 7 11 | nfim | ⊢ Ⅎ 𝑦 ( 𝑥 ≤ 𝑧 → 𝑚 ≤ ( ( 𝑦 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑧 ) ) |
| 13 | nfv | ⊢ Ⅎ 𝑧 ( 𝑥 ≤ 𝑦 → 𝑚 ≤ ( ( 𝑦 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑦 ) ) | |
| 14 | breq2 | ⊢ ( 𝑧 = 𝑦 → ( 𝑥 ≤ 𝑧 ↔ 𝑥 ≤ 𝑦 ) ) | |
| 15 | fveq2 | ⊢ ( 𝑧 = 𝑦 → ( ( 𝑦 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑧 ) = ( ( 𝑦 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑦 ) ) | |
| 16 | 15 | breq2d | ⊢ ( 𝑧 = 𝑦 → ( 𝑚 ≤ ( ( 𝑦 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑧 ) ↔ 𝑚 ≤ ( ( 𝑦 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑦 ) ) ) |
| 17 | 14 16 | imbi12d | ⊢ ( 𝑧 = 𝑦 → ( ( 𝑥 ≤ 𝑧 → 𝑚 ≤ ( ( 𝑦 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑧 ) ) ↔ ( 𝑥 ≤ 𝑦 → 𝑚 ≤ ( ( 𝑦 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑦 ) ) ) ) |
| 18 | 12 13 17 | cbvralw | ⊢ ( ∀ 𝑧 ∈ 𝐵 ( 𝑥 ≤ 𝑧 → 𝑚 ≤ ( ( 𝑦 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑧 ) ) ↔ ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → 𝑚 ≤ ( ( 𝑦 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑦 ) ) ) |
| 19 | simpr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) | |
| 20 | eqid | ⊢ ( 𝑦 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑦 ∈ 𝐵 ↦ 𝐶 ) | |
| 21 | 20 | fvmpt2 | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴 ) → ( ( 𝑦 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑦 ) = 𝐶 ) |
| 22 | 19 3 21 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑦 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑦 ) = 𝐶 ) |
| 23 | 22 | breq2d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑚 ≤ ( ( 𝑦 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑦 ) ↔ 𝑚 ≤ 𝐶 ) ) |
| 24 | 23 | imbi2d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑥 ≤ 𝑦 → 𝑚 ≤ ( ( 𝑦 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑦 ) ) ↔ ( 𝑥 ≤ 𝑦 → 𝑚 ≤ 𝐶 ) ) ) |
| 25 | 24 | ralbidva | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → 𝑚 ≤ ( ( 𝑦 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → 𝑚 ≤ 𝐶 ) ) ) |
| 26 | 18 25 | bitrid | ⊢ ( 𝜑 → ( ∀ 𝑧 ∈ 𝐵 ( 𝑥 ≤ 𝑧 → 𝑚 ≤ ( ( 𝑦 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑧 ) ) ↔ ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → 𝑚 ≤ 𝐶 ) ) ) |
| 27 | 26 | rexbidv | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ 𝐵 ( 𝑥 ≤ 𝑧 → 𝑚 ≤ ( ( 𝑦 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑧 ) ) ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → 𝑚 ≤ 𝐶 ) ) ) |
| 28 | 27 | adantr | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) → ( ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ 𝐵 ( 𝑥 ≤ 𝑧 → 𝑚 ≤ ( ( 𝑦 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑧 ) ) ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → 𝑚 ≤ 𝐶 ) ) ) |
| 29 | 5 28 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ 𝐵 ( 𝑥 ≤ 𝑧 → 𝑚 ≤ ( ( 𝑦 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑧 ) ) ) |
| 30 | 1 2 6 4 29 | o1co | ⊢ ( 𝜑 → ( 𝐹 ∘ ( 𝑦 ∈ 𝐵 ↦ 𝐶 ) ) ∈ 𝑂(1) ) |