This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of a normed complex vector space expressed in terms of the distance function of its induced metric. Problem 1 of Kreyszig p. 63. (Contributed by NM, 4-Dec-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvnd.1 | |- X = ( BaseSet ` U ) |
|
| nvnd.5 | |- Z = ( 0vec ` U ) |
||
| nvnd.6 | |- N = ( normCV ` U ) |
||
| nvnd.8 | |- D = ( IndMet ` U ) |
||
| Assertion | nvnd | |- ( ( U e. NrmCVec /\ A e. X ) -> ( N ` A ) = ( A D Z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvnd.1 | |- X = ( BaseSet ` U ) |
|
| 2 | nvnd.5 | |- Z = ( 0vec ` U ) |
|
| 3 | nvnd.6 | |- N = ( normCV ` U ) |
|
| 4 | nvnd.8 | |- D = ( IndMet ` U ) |
|
| 5 | 1 2 | nvzcl | |- ( U e. NrmCVec -> Z e. X ) |
| 6 | 5 | adantr | |- ( ( U e. NrmCVec /\ A e. X ) -> Z e. X ) |
| 7 | eqid | |- ( -v ` U ) = ( -v ` U ) |
|
| 8 | 1 7 3 4 | imsdval | |- ( ( U e. NrmCVec /\ A e. X /\ Z e. X ) -> ( A D Z ) = ( N ` ( A ( -v ` U ) Z ) ) ) |
| 9 | 6 8 | mpd3an3 | |- ( ( U e. NrmCVec /\ A e. X ) -> ( A D Z ) = ( N ` ( A ( -v ` U ) Z ) ) ) |
| 10 | eqid | |- ( +v ` U ) = ( +v ` U ) |
|
| 11 | eqid | |- ( .sOLD ` U ) = ( .sOLD ` U ) |
|
| 12 | 1 10 11 7 | nvmval | |- ( ( U e. NrmCVec /\ A e. X /\ Z e. X ) -> ( A ( -v ` U ) Z ) = ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) Z ) ) ) |
| 13 | 6 12 | mpd3an3 | |- ( ( U e. NrmCVec /\ A e. X ) -> ( A ( -v ` U ) Z ) = ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) Z ) ) ) |
| 14 | neg1cn | |- -u 1 e. CC |
|
| 15 | 11 2 | nvsz | |- ( ( U e. NrmCVec /\ -u 1 e. CC ) -> ( -u 1 ( .sOLD ` U ) Z ) = Z ) |
| 16 | 14 15 | mpan2 | |- ( U e. NrmCVec -> ( -u 1 ( .sOLD ` U ) Z ) = Z ) |
| 17 | 16 | oveq2d | |- ( U e. NrmCVec -> ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) Z ) ) = ( A ( +v ` U ) Z ) ) |
| 18 | 17 | adantr | |- ( ( U e. NrmCVec /\ A e. X ) -> ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) Z ) ) = ( A ( +v ` U ) Z ) ) |
| 19 | 1 10 2 | nv0rid | |- ( ( U e. NrmCVec /\ A e. X ) -> ( A ( +v ` U ) Z ) = A ) |
| 20 | 13 18 19 | 3eqtrd | |- ( ( U e. NrmCVec /\ A e. X ) -> ( A ( -v ` U ) Z ) = A ) |
| 21 | 20 | fveq2d | |- ( ( U e. NrmCVec /\ A e. X ) -> ( N ` ( A ( -v ` U ) Z ) ) = ( N ` A ) ) |
| 22 | 9 21 | eqtr2d | |- ( ( U e. NrmCVec /\ A e. X ) -> ( N ` A ) = ( A D Z ) ) |