This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Triangle inequality for the norm of a vector difference. (Contributed by NM, 27-Dec-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvmtri.1 | |- X = ( BaseSet ` U ) |
|
| nvmtri.3 | |- M = ( -v ` U ) |
||
| nvmtri.6 | |- N = ( normCV ` U ) |
||
| Assertion | nvmtri | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( N ` ( A M B ) ) <_ ( ( N ` A ) + ( N ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvmtri.1 | |- X = ( BaseSet ` U ) |
|
| 2 | nvmtri.3 | |- M = ( -v ` U ) |
|
| 3 | nvmtri.6 | |- N = ( normCV ` U ) |
|
| 4 | neg1cn | |- -u 1 e. CC |
|
| 5 | eqid | |- ( .sOLD ` U ) = ( .sOLD ` U ) |
|
| 6 | 1 5 | nvscl | |- ( ( U e. NrmCVec /\ -u 1 e. CC /\ B e. X ) -> ( -u 1 ( .sOLD ` U ) B ) e. X ) |
| 7 | 4 6 | mp3an2 | |- ( ( U e. NrmCVec /\ B e. X ) -> ( -u 1 ( .sOLD ` U ) B ) e. X ) |
| 8 | 7 | 3adant2 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( -u 1 ( .sOLD ` U ) B ) e. X ) |
| 9 | eqid | |- ( +v ` U ) = ( +v ` U ) |
|
| 10 | 1 9 3 | nvtri | |- ( ( U e. NrmCVec /\ A e. X /\ ( -u 1 ( .sOLD ` U ) B ) e. X ) -> ( N ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) <_ ( ( N ` A ) + ( N ` ( -u 1 ( .sOLD ` U ) B ) ) ) ) |
| 11 | 8 10 | syld3an3 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( N ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) <_ ( ( N ` A ) + ( N ` ( -u 1 ( .sOLD ` U ) B ) ) ) ) |
| 12 | 1 9 5 2 | nvmval | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A M B ) = ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) |
| 13 | 12 | fveq2d | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( N ` ( A M B ) ) = ( N ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) ) |
| 14 | 1 5 3 | nvs | |- ( ( U e. NrmCVec /\ -u 1 e. CC /\ B e. X ) -> ( N ` ( -u 1 ( .sOLD ` U ) B ) ) = ( ( abs ` -u 1 ) x. ( N ` B ) ) ) |
| 15 | 4 14 | mp3an2 | |- ( ( U e. NrmCVec /\ B e. X ) -> ( N ` ( -u 1 ( .sOLD ` U ) B ) ) = ( ( abs ` -u 1 ) x. ( N ` B ) ) ) |
| 16 | ax-1cn | |- 1 e. CC |
|
| 17 | 16 | absnegi | |- ( abs ` -u 1 ) = ( abs ` 1 ) |
| 18 | abs1 | |- ( abs ` 1 ) = 1 |
|
| 19 | 17 18 | eqtri | |- ( abs ` -u 1 ) = 1 |
| 20 | 19 | oveq1i | |- ( ( abs ` -u 1 ) x. ( N ` B ) ) = ( 1 x. ( N ` B ) ) |
| 21 | 1 3 | nvcl | |- ( ( U e. NrmCVec /\ B e. X ) -> ( N ` B ) e. RR ) |
| 22 | 21 | recnd | |- ( ( U e. NrmCVec /\ B e. X ) -> ( N ` B ) e. CC ) |
| 23 | 22 | mullidd | |- ( ( U e. NrmCVec /\ B e. X ) -> ( 1 x. ( N ` B ) ) = ( N ` B ) ) |
| 24 | 20 23 | eqtrid | |- ( ( U e. NrmCVec /\ B e. X ) -> ( ( abs ` -u 1 ) x. ( N ` B ) ) = ( N ` B ) ) |
| 25 | 15 24 | eqtr2d | |- ( ( U e. NrmCVec /\ B e. X ) -> ( N ` B ) = ( N ` ( -u 1 ( .sOLD ` U ) B ) ) ) |
| 26 | 25 | 3adant2 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( N ` B ) = ( N ` ( -u 1 ( .sOLD ` U ) B ) ) ) |
| 27 | 26 | oveq2d | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( N ` A ) + ( N ` B ) ) = ( ( N ` A ) + ( N ` ( -u 1 ( .sOLD ` U ) B ) ) ) ) |
| 28 | 11 13 27 | 3brtr4d | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( N ` ( A M B ) ) <_ ( ( N ` A ) + ( N ` B ) ) ) |