This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for a normed complex vector space. (Contributed by NM, 24-Jan-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvpncan2.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| nvpncan2.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | ||
| nvpncan2.3 | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | ||
| Assertion | nvnpcan | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝑀 𝐵 ) 𝐺 𝐵 ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvpncan2.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | nvpncan2.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | |
| 3 | nvpncan2.3 | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | |
| 4 | simprl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → 𝐴 ∈ 𝑋 ) | |
| 5 | simprr | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → 𝐵 ∈ 𝑋 ) | |
| 6 | 4 5 5 | 3jca | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) |
| 7 | 1 2 3 | nvaddsub | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝑀 𝐵 ) = ( ( 𝐴 𝑀 𝐵 ) 𝐺 𝐵 ) ) |
| 8 | 6 7 | syldan | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝑀 𝐵 ) = ( ( 𝐴 𝑀 𝐵 ) 𝐺 𝐵 ) ) |
| 9 | 8 | 3impb | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝐺 𝐵 ) 𝑀 𝐵 ) = ( ( 𝐴 𝑀 𝐵 ) 𝐺 𝐵 ) ) |
| 10 | 1 2 3 | nvpncan | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝐺 𝐵 ) 𝑀 𝐵 ) = 𝐴 ) |
| 11 | 9 10 | eqtr3d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝑀 𝐵 ) 𝐺 𝐵 ) = 𝐴 ) |