This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for scalar product over subtraction. (Contributed by NM, 14-Feb-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvmdi.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| nvmdi.3 | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | ||
| nvmdi.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | ||
| Assertion | nvmdi | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝑆 ( 𝐵 𝑀 𝐶 ) ) = ( ( 𝐴 𝑆 𝐵 ) 𝑀 ( 𝐴 𝑆 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvmdi.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | nvmdi.3 | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | |
| 3 | nvmdi.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | |
| 4 | simpr1 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐴 ∈ ℂ ) | |
| 5 | simpr2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐵 ∈ 𝑋 ) | |
| 6 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 7 | 1 3 | nvscl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ - 1 ∈ ℂ ∧ 𝐶 ∈ 𝑋 ) → ( - 1 𝑆 𝐶 ) ∈ 𝑋 ) |
| 8 | 6 7 | mp3an2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐶 ∈ 𝑋 ) → ( - 1 𝑆 𝐶 ) ∈ 𝑋 ) |
| 9 | 8 | 3ad2antr3 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( - 1 𝑆 𝐶 ) ∈ 𝑋 ) |
| 10 | 4 5 9 | 3jca | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ ( - 1 𝑆 𝐶 ) ∈ 𝑋 ) ) |
| 11 | eqid | ⊢ ( +𝑣 ‘ 𝑈 ) = ( +𝑣 ‘ 𝑈 ) | |
| 12 | 1 11 3 | nvdi | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ ( - 1 𝑆 𝐶 ) ∈ 𝑋 ) ) → ( 𝐴 𝑆 ( 𝐵 ( +𝑣 ‘ 𝑈 ) ( - 1 𝑆 𝐶 ) ) ) = ( ( 𝐴 𝑆 𝐵 ) ( +𝑣 ‘ 𝑈 ) ( 𝐴 𝑆 ( - 1 𝑆 𝐶 ) ) ) ) |
| 13 | 10 12 | syldan | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝑆 ( 𝐵 ( +𝑣 ‘ 𝑈 ) ( - 1 𝑆 𝐶 ) ) ) = ( ( 𝐴 𝑆 𝐵 ) ( +𝑣 ‘ 𝑈 ) ( 𝐴 𝑆 ( - 1 𝑆 𝐶 ) ) ) ) |
| 14 | 1 3 | nvscom | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ ℂ ∧ - 1 ∈ ℂ ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝑆 ( - 1 𝑆 𝐶 ) ) = ( - 1 𝑆 ( 𝐴 𝑆 𝐶 ) ) ) |
| 15 | 6 14 | mp3anr2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝑆 ( - 1 𝑆 𝐶 ) ) = ( - 1 𝑆 ( 𝐴 𝑆 𝐶 ) ) ) |
| 16 | 15 | 3adantr2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝑆 ( - 1 𝑆 𝐶 ) ) = ( - 1 𝑆 ( 𝐴 𝑆 𝐶 ) ) ) |
| 17 | 16 | oveq2d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝑆 𝐵 ) ( +𝑣 ‘ 𝑈 ) ( 𝐴 𝑆 ( - 1 𝑆 𝐶 ) ) ) = ( ( 𝐴 𝑆 𝐵 ) ( +𝑣 ‘ 𝑈 ) ( - 1 𝑆 ( 𝐴 𝑆 𝐶 ) ) ) ) |
| 18 | 13 17 | eqtrd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝑆 ( 𝐵 ( +𝑣 ‘ 𝑈 ) ( - 1 𝑆 𝐶 ) ) ) = ( ( 𝐴 𝑆 𝐵 ) ( +𝑣 ‘ 𝑈 ) ( - 1 𝑆 ( 𝐴 𝑆 𝐶 ) ) ) ) |
| 19 | 1 11 3 2 | nvmval | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐵 𝑀 𝐶 ) = ( 𝐵 ( +𝑣 ‘ 𝑈 ) ( - 1 𝑆 𝐶 ) ) ) |
| 20 | 19 | 3adant3r1 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐵 𝑀 𝐶 ) = ( 𝐵 ( +𝑣 ‘ 𝑈 ) ( - 1 𝑆 𝐶 ) ) ) |
| 21 | 20 | oveq2d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝑆 ( 𝐵 𝑀 𝐶 ) ) = ( 𝐴 𝑆 ( 𝐵 ( +𝑣 ‘ 𝑈 ) ( - 1 𝑆 𝐶 ) ) ) ) |
| 22 | simpl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝑈 ∈ NrmCVec ) | |
| 23 | 1 3 | nvscl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝑆 𝐵 ) ∈ 𝑋 ) |
| 24 | 23 | 3adant3r3 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝑆 𝐵 ) ∈ 𝑋 ) |
| 25 | 1 3 | nvscl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 𝑆 𝐶 ) ∈ 𝑋 ) |
| 26 | 25 | 3adant3r2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝑆 𝐶 ) ∈ 𝑋 ) |
| 27 | 1 11 3 2 | nvmval | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 𝑆 𝐵 ) ∈ 𝑋 ∧ ( 𝐴 𝑆 𝐶 ) ∈ 𝑋 ) → ( ( 𝐴 𝑆 𝐵 ) 𝑀 ( 𝐴 𝑆 𝐶 ) ) = ( ( 𝐴 𝑆 𝐵 ) ( +𝑣 ‘ 𝑈 ) ( - 1 𝑆 ( 𝐴 𝑆 𝐶 ) ) ) ) |
| 28 | 22 24 26 27 | syl3anc | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝑆 𝐵 ) 𝑀 ( 𝐴 𝑆 𝐶 ) ) = ( ( 𝐴 𝑆 𝐵 ) ( +𝑣 ‘ 𝑈 ) ( - 1 𝑆 ( 𝐴 𝑆 𝐶 ) ) ) ) |
| 29 | 18 21 28 | 3eqtr4d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝑆 ( 𝐵 𝑀 𝐶 ) ) = ( ( 𝐴 𝑆 𝐵 ) 𝑀 ( 𝐴 𝑆 𝐶 ) ) ) |