This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for scalar product over subtraction. (Contributed by NM, 14-Feb-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvmdi.1 | |- X = ( BaseSet ` U ) |
|
| nvmdi.3 | |- M = ( -v ` U ) |
||
| nvmdi.4 | |- S = ( .sOLD ` U ) |
||
| Assertion | nvmdi | |- ( ( U e. NrmCVec /\ ( A e. CC /\ B e. X /\ C e. X ) ) -> ( A S ( B M C ) ) = ( ( A S B ) M ( A S C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvmdi.1 | |- X = ( BaseSet ` U ) |
|
| 2 | nvmdi.3 | |- M = ( -v ` U ) |
|
| 3 | nvmdi.4 | |- S = ( .sOLD ` U ) |
|
| 4 | simpr1 | |- ( ( U e. NrmCVec /\ ( A e. CC /\ B e. X /\ C e. X ) ) -> A e. CC ) |
|
| 5 | simpr2 | |- ( ( U e. NrmCVec /\ ( A e. CC /\ B e. X /\ C e. X ) ) -> B e. X ) |
|
| 6 | neg1cn | |- -u 1 e. CC |
|
| 7 | 1 3 | nvscl | |- ( ( U e. NrmCVec /\ -u 1 e. CC /\ C e. X ) -> ( -u 1 S C ) e. X ) |
| 8 | 6 7 | mp3an2 | |- ( ( U e. NrmCVec /\ C e. X ) -> ( -u 1 S C ) e. X ) |
| 9 | 8 | 3ad2antr3 | |- ( ( U e. NrmCVec /\ ( A e. CC /\ B e. X /\ C e. X ) ) -> ( -u 1 S C ) e. X ) |
| 10 | 4 5 9 | 3jca | |- ( ( U e. NrmCVec /\ ( A e. CC /\ B e. X /\ C e. X ) ) -> ( A e. CC /\ B e. X /\ ( -u 1 S C ) e. X ) ) |
| 11 | eqid | |- ( +v ` U ) = ( +v ` U ) |
|
| 12 | 1 11 3 | nvdi | |- ( ( U e. NrmCVec /\ ( A e. CC /\ B e. X /\ ( -u 1 S C ) e. X ) ) -> ( A S ( B ( +v ` U ) ( -u 1 S C ) ) ) = ( ( A S B ) ( +v ` U ) ( A S ( -u 1 S C ) ) ) ) |
| 13 | 10 12 | syldan | |- ( ( U e. NrmCVec /\ ( A e. CC /\ B e. X /\ C e. X ) ) -> ( A S ( B ( +v ` U ) ( -u 1 S C ) ) ) = ( ( A S B ) ( +v ` U ) ( A S ( -u 1 S C ) ) ) ) |
| 14 | 1 3 | nvscom | |- ( ( U e. NrmCVec /\ ( A e. CC /\ -u 1 e. CC /\ C e. X ) ) -> ( A S ( -u 1 S C ) ) = ( -u 1 S ( A S C ) ) ) |
| 15 | 6 14 | mp3anr2 | |- ( ( U e. NrmCVec /\ ( A e. CC /\ C e. X ) ) -> ( A S ( -u 1 S C ) ) = ( -u 1 S ( A S C ) ) ) |
| 16 | 15 | 3adantr2 | |- ( ( U e. NrmCVec /\ ( A e. CC /\ B e. X /\ C e. X ) ) -> ( A S ( -u 1 S C ) ) = ( -u 1 S ( A S C ) ) ) |
| 17 | 16 | oveq2d | |- ( ( U e. NrmCVec /\ ( A e. CC /\ B e. X /\ C e. X ) ) -> ( ( A S B ) ( +v ` U ) ( A S ( -u 1 S C ) ) ) = ( ( A S B ) ( +v ` U ) ( -u 1 S ( A S C ) ) ) ) |
| 18 | 13 17 | eqtrd | |- ( ( U e. NrmCVec /\ ( A e. CC /\ B e. X /\ C e. X ) ) -> ( A S ( B ( +v ` U ) ( -u 1 S C ) ) ) = ( ( A S B ) ( +v ` U ) ( -u 1 S ( A S C ) ) ) ) |
| 19 | 1 11 3 2 | nvmval | |- ( ( U e. NrmCVec /\ B e. X /\ C e. X ) -> ( B M C ) = ( B ( +v ` U ) ( -u 1 S C ) ) ) |
| 20 | 19 | 3adant3r1 | |- ( ( U e. NrmCVec /\ ( A e. CC /\ B e. X /\ C e. X ) ) -> ( B M C ) = ( B ( +v ` U ) ( -u 1 S C ) ) ) |
| 21 | 20 | oveq2d | |- ( ( U e. NrmCVec /\ ( A e. CC /\ B e. X /\ C e. X ) ) -> ( A S ( B M C ) ) = ( A S ( B ( +v ` U ) ( -u 1 S C ) ) ) ) |
| 22 | simpl | |- ( ( U e. NrmCVec /\ ( A e. CC /\ B e. X /\ C e. X ) ) -> U e. NrmCVec ) |
|
| 23 | 1 3 | nvscl | |- ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) -> ( A S B ) e. X ) |
| 24 | 23 | 3adant3r3 | |- ( ( U e. NrmCVec /\ ( A e. CC /\ B e. X /\ C e. X ) ) -> ( A S B ) e. X ) |
| 25 | 1 3 | nvscl | |- ( ( U e. NrmCVec /\ A e. CC /\ C e. X ) -> ( A S C ) e. X ) |
| 26 | 25 | 3adant3r2 | |- ( ( U e. NrmCVec /\ ( A e. CC /\ B e. X /\ C e. X ) ) -> ( A S C ) e. X ) |
| 27 | 1 11 3 2 | nvmval | |- ( ( U e. NrmCVec /\ ( A S B ) e. X /\ ( A S C ) e. X ) -> ( ( A S B ) M ( A S C ) ) = ( ( A S B ) ( +v ` U ) ( -u 1 S ( A S C ) ) ) ) |
| 28 | 22 24 26 27 | syl3anc | |- ( ( U e. NrmCVec /\ ( A e. CC /\ B e. X /\ C e. X ) ) -> ( ( A S B ) M ( A S C ) ) = ( ( A S B ) ( +v ` U ) ( -u 1 S ( A S C ) ) ) ) |
| 29 | 18 21 28 | 3eqtr4d | |- ( ( U e. NrmCVec /\ ( A e. CC /\ B e. X /\ C e. X ) ) -> ( A S ( B M C ) ) = ( ( A S B ) M ( A S C ) ) ) |