This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutative law for the scalar product of a normed complex vector space. (Contributed by NM, 14-Feb-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvscl.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| nvscl.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | ||
| Assertion | nvscom | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝑆 ( 𝐵 𝑆 𝐶 ) ) = ( 𝐵 𝑆 ( 𝐴 𝑆 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvscl.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | nvscl.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | |
| 3 | mulcom | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) ) | |
| 4 | 3 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) 𝑆 𝐶 ) = ( ( 𝐵 · 𝐴 ) 𝑆 𝐶 ) ) |
| 5 | 4 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋 ) → ( ( 𝐴 · 𝐵 ) 𝑆 𝐶 ) = ( ( 𝐵 · 𝐴 ) 𝑆 𝐶 ) ) |
| 6 | 5 | adantl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 · 𝐵 ) 𝑆 𝐶 ) = ( ( 𝐵 · 𝐴 ) 𝑆 𝐶 ) ) |
| 7 | 1 2 | nvsass | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 · 𝐵 ) 𝑆 𝐶 ) = ( 𝐴 𝑆 ( 𝐵 𝑆 𝐶 ) ) ) |
| 8 | 3ancoma | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋 ) ↔ ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐶 ∈ 𝑋 ) ) | |
| 9 | 1 2 | nvsass | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐵 · 𝐴 ) 𝑆 𝐶 ) = ( 𝐵 𝑆 ( 𝐴 𝑆 𝐶 ) ) ) |
| 10 | 8 9 | sylan2b | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐵 · 𝐴 ) 𝑆 𝐶 ) = ( 𝐵 𝑆 ( 𝐴 𝑆 𝐶 ) ) ) |
| 11 | 6 7 10 | 3eqtr3d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝑆 ( 𝐵 𝑆 𝐶 ) ) = ( 𝐵 𝑆 ( 𝐴 𝑆 𝐶 ) ) ) |