This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The vector space component of a normed complex vector space is an ordered pair of the underlying group and a scalar product. (Contributed by NM, 28-Nov-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvvop.1 | ⊢ 𝑊 = ( 1st ‘ 𝑈 ) | |
| nvvop.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | ||
| nvvop.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | ||
| Assertion | nvvop | ⊢ ( 𝑈 ∈ NrmCVec → 𝑊 = 〈 𝐺 , 𝑆 〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvvop.1 | ⊢ 𝑊 = ( 1st ‘ 𝑈 ) | |
| 2 | nvvop.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | |
| 3 | nvvop.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | |
| 4 | vcrel | ⊢ Rel CVecOLD | |
| 5 | nvss | ⊢ NrmCVec ⊆ ( CVecOLD × V ) | |
| 6 | eqid | ⊢ ( normCV ‘ 𝑈 ) = ( normCV ‘ 𝑈 ) | |
| 7 | 1 6 | nvop2 | ⊢ ( 𝑈 ∈ NrmCVec → 𝑈 = 〈 𝑊 , ( normCV ‘ 𝑈 ) 〉 ) |
| 8 | 7 | eleq1d | ⊢ ( 𝑈 ∈ NrmCVec → ( 𝑈 ∈ NrmCVec ↔ 〈 𝑊 , ( normCV ‘ 𝑈 ) 〉 ∈ NrmCVec ) ) |
| 9 | 8 | ibi | ⊢ ( 𝑈 ∈ NrmCVec → 〈 𝑊 , ( normCV ‘ 𝑈 ) 〉 ∈ NrmCVec ) |
| 10 | 5 9 | sselid | ⊢ ( 𝑈 ∈ NrmCVec → 〈 𝑊 , ( normCV ‘ 𝑈 ) 〉 ∈ ( CVecOLD × V ) ) |
| 11 | opelxp1 | ⊢ ( 〈 𝑊 , ( normCV ‘ 𝑈 ) 〉 ∈ ( CVecOLD × V ) → 𝑊 ∈ CVecOLD ) | |
| 12 | 10 11 | syl | ⊢ ( 𝑈 ∈ NrmCVec → 𝑊 ∈ CVecOLD ) |
| 13 | 1st2nd | ⊢ ( ( Rel CVecOLD ∧ 𝑊 ∈ CVecOLD ) → 𝑊 = 〈 ( 1st ‘ 𝑊 ) , ( 2nd ‘ 𝑊 ) 〉 ) | |
| 14 | 4 12 13 | sylancr | ⊢ ( 𝑈 ∈ NrmCVec → 𝑊 = 〈 ( 1st ‘ 𝑊 ) , ( 2nd ‘ 𝑊 ) 〉 ) |
| 15 | 2 | vafval | ⊢ 𝐺 = ( 1st ‘ ( 1st ‘ 𝑈 ) ) |
| 16 | 1 | fveq2i | ⊢ ( 1st ‘ 𝑊 ) = ( 1st ‘ ( 1st ‘ 𝑈 ) ) |
| 17 | 15 16 | eqtr4i | ⊢ 𝐺 = ( 1st ‘ 𝑊 ) |
| 18 | 3 | smfval | ⊢ 𝑆 = ( 2nd ‘ ( 1st ‘ 𝑈 ) ) |
| 19 | 1 | fveq2i | ⊢ ( 2nd ‘ 𝑊 ) = ( 2nd ‘ ( 1st ‘ 𝑈 ) ) |
| 20 | 18 19 | eqtr4i | ⊢ 𝑆 = ( 2nd ‘ 𝑊 ) |
| 21 | 17 20 | opeq12i | ⊢ 〈 𝐺 , 𝑆 〉 = 〈 ( 1st ‘ 𝑊 ) , ( 2nd ‘ 𝑊 ) 〉 |
| 22 | 14 21 | eqtr4di | ⊢ ( 𝑈 ∈ NrmCVec → 𝑊 = 〈 𝐺 , 𝑆 〉 ) |