This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Structure of the class of all normed complex vectors spaces. (Contributed by NM, 28-Nov-2006) (Revised by Mario Carneiro, 1-May-2015) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nvss | ⊢ NrmCVec ⊆ ( CVecOLD × V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | ⊢ ( 𝑤 = 〈 𝑔 , 𝑠 〉 → ( 𝑤 ∈ CVecOLD ↔ 〈 𝑔 , 𝑠 〉 ∈ CVecOLD ) ) | |
| 2 | 1 | biimpar | ⊢ ( ( 𝑤 = 〈 𝑔 , 𝑠 〉 ∧ 〈 𝑔 , 𝑠 〉 ∈ CVecOLD ) → 𝑤 ∈ CVecOLD ) |
| 3 | 2 | 3ad2antr1 | ⊢ ( ( 𝑤 = 〈 𝑔 , 𝑠 〉 ∧ ( 〈 𝑔 , 𝑠 〉 ∈ CVecOLD ∧ 𝑛 : ran 𝑔 ⟶ ℝ ∧ ∀ 𝑥 ∈ ran 𝑔 ( ( ( 𝑛 ‘ 𝑥 ) = 0 → 𝑥 = ( GId ‘ 𝑔 ) ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ran 𝑔 ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ) ) ) → 𝑤 ∈ CVecOLD ) |
| 4 | 3 | exlimivv | ⊢ ( ∃ 𝑔 ∃ 𝑠 ( 𝑤 = 〈 𝑔 , 𝑠 〉 ∧ ( 〈 𝑔 , 𝑠 〉 ∈ CVecOLD ∧ 𝑛 : ran 𝑔 ⟶ ℝ ∧ ∀ 𝑥 ∈ ran 𝑔 ( ( ( 𝑛 ‘ 𝑥 ) = 0 → 𝑥 = ( GId ‘ 𝑔 ) ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ran 𝑔 ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ) ) ) → 𝑤 ∈ CVecOLD ) |
| 5 | vex | ⊢ 𝑛 ∈ V | |
| 6 | 4 5 | jctir | ⊢ ( ∃ 𝑔 ∃ 𝑠 ( 𝑤 = 〈 𝑔 , 𝑠 〉 ∧ ( 〈 𝑔 , 𝑠 〉 ∈ CVecOLD ∧ 𝑛 : ran 𝑔 ⟶ ℝ ∧ ∀ 𝑥 ∈ ran 𝑔 ( ( ( 𝑛 ‘ 𝑥 ) = 0 → 𝑥 = ( GId ‘ 𝑔 ) ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ran 𝑔 ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ) ) ) → ( 𝑤 ∈ CVecOLD ∧ 𝑛 ∈ V ) ) |
| 7 | 6 | ssopab2i | ⊢ { 〈 𝑤 , 𝑛 〉 ∣ ∃ 𝑔 ∃ 𝑠 ( 𝑤 = 〈 𝑔 , 𝑠 〉 ∧ ( 〈 𝑔 , 𝑠 〉 ∈ CVecOLD ∧ 𝑛 : ran 𝑔 ⟶ ℝ ∧ ∀ 𝑥 ∈ ran 𝑔 ( ( ( 𝑛 ‘ 𝑥 ) = 0 → 𝑥 = ( GId ‘ 𝑔 ) ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ran 𝑔 ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ) ) ) } ⊆ { 〈 𝑤 , 𝑛 〉 ∣ ( 𝑤 ∈ CVecOLD ∧ 𝑛 ∈ V ) } |
| 8 | df-nv | ⊢ NrmCVec = { 〈 〈 𝑔 , 𝑠 〉 , 𝑛 〉 ∣ ( 〈 𝑔 , 𝑠 〉 ∈ CVecOLD ∧ 𝑛 : ran 𝑔 ⟶ ℝ ∧ ∀ 𝑥 ∈ ran 𝑔 ( ( ( 𝑛 ‘ 𝑥 ) = 0 → 𝑥 = ( GId ‘ 𝑔 ) ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ran 𝑔 ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ) ) } | |
| 9 | dfoprab2 | ⊢ { 〈 〈 𝑔 , 𝑠 〉 , 𝑛 〉 ∣ ( 〈 𝑔 , 𝑠 〉 ∈ CVecOLD ∧ 𝑛 : ran 𝑔 ⟶ ℝ ∧ ∀ 𝑥 ∈ ran 𝑔 ( ( ( 𝑛 ‘ 𝑥 ) = 0 → 𝑥 = ( GId ‘ 𝑔 ) ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ran 𝑔 ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ) ) } = { 〈 𝑤 , 𝑛 〉 ∣ ∃ 𝑔 ∃ 𝑠 ( 𝑤 = 〈 𝑔 , 𝑠 〉 ∧ ( 〈 𝑔 , 𝑠 〉 ∈ CVecOLD ∧ 𝑛 : ran 𝑔 ⟶ ℝ ∧ ∀ 𝑥 ∈ ran 𝑔 ( ( ( 𝑛 ‘ 𝑥 ) = 0 → 𝑥 = ( GId ‘ 𝑔 ) ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ran 𝑔 ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ) ) ) } | |
| 10 | 8 9 | eqtri | ⊢ NrmCVec = { 〈 𝑤 , 𝑛 〉 ∣ ∃ 𝑔 ∃ 𝑠 ( 𝑤 = 〈 𝑔 , 𝑠 〉 ∧ ( 〈 𝑔 , 𝑠 〉 ∈ CVecOLD ∧ 𝑛 : ran 𝑔 ⟶ ℝ ∧ ∀ 𝑥 ∈ ran 𝑔 ( ( ( 𝑛 ‘ 𝑥 ) = 0 → 𝑥 = ( GId ‘ 𝑔 ) ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ran 𝑔 ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ) ) ) } |
| 11 | df-xp | ⊢ ( CVecOLD × V ) = { 〈 𝑤 , 𝑛 〉 ∣ ( 𝑤 ∈ CVecOLD ∧ 𝑛 ∈ V ) } | |
| 12 | 7 10 11 | 3sstr4i | ⊢ NrmCVec ⊆ ( CVecOLD × V ) |