This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The components of a normed complex vector space are sets. (Contributed by NM, 5-Jun-2008) (Revised by Mario Carneiro, 1-May-2015) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nvex | |- ( <. <. G , S >. , N >. e. NrmCVec -> ( G e. _V /\ S e. _V /\ N e. _V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvvcop | |- ( <. <. G , S >. , N >. e. NrmCVec -> <. G , S >. e. CVecOLD ) |
|
| 2 | vcex | |- ( <. G , S >. e. CVecOLD -> ( G e. _V /\ S e. _V ) ) |
|
| 3 | 1 2 | syl | |- ( <. <. G , S >. , N >. e. NrmCVec -> ( G e. _V /\ S e. _V ) ) |
| 4 | nvss | |- NrmCVec C_ ( CVecOLD X. _V ) |
|
| 5 | 4 | sseli | |- ( <. <. G , S >. , N >. e. NrmCVec -> <. <. G , S >. , N >. e. ( CVecOLD X. _V ) ) |
| 6 | opelxp2 | |- ( <. <. G , S >. , N >. e. ( CVecOLD X. _V ) -> N e. _V ) |
|
| 7 | 5 6 | syl | |- ( <. <. G , S >. , N >. e. NrmCVec -> N e. _V ) |
| 8 | df-3an | |- ( ( G e. _V /\ S e. _V /\ N e. _V ) <-> ( ( G e. _V /\ S e. _V ) /\ N e. _V ) ) |
|
| 9 | 3 7 8 | sylanbrc | |- ( <. <. G , S >. , N >. e. NrmCVec -> ( G e. _V /\ S e. _V /\ N e. _V ) ) |