This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Interior expressed in terms of closure. (Contributed by NM, 1-Oct-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clscld.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | ntrval2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑆 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | difss | ⊢ ( 𝑋 ∖ 𝑆 ) ⊆ 𝑋 | |
| 3 | 1 | clsval2 | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑋 ∖ 𝑆 ) ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑆 ) ) = ( 𝑋 ∖ ( ( int ‘ 𝐽 ) ‘ ( 𝑋 ∖ ( 𝑋 ∖ 𝑆 ) ) ) ) ) |
| 4 | 2 3 | mpan2 | ⊢ ( 𝐽 ∈ Top → ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑆 ) ) = ( 𝑋 ∖ ( ( int ‘ 𝐽 ) ‘ ( 𝑋 ∖ ( 𝑋 ∖ 𝑆 ) ) ) ) ) |
| 5 | 4 | adantr | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑆 ) ) = ( 𝑋 ∖ ( ( int ‘ 𝐽 ) ‘ ( 𝑋 ∖ ( 𝑋 ∖ 𝑆 ) ) ) ) ) |
| 6 | dfss4 | ⊢ ( 𝑆 ⊆ 𝑋 ↔ ( 𝑋 ∖ ( 𝑋 ∖ 𝑆 ) ) = 𝑆 ) | |
| 7 | 6 | biimpi | ⊢ ( 𝑆 ⊆ 𝑋 → ( 𝑋 ∖ ( 𝑋 ∖ 𝑆 ) ) = 𝑆 ) |
| 8 | 7 | fveq2d | ⊢ ( 𝑆 ⊆ 𝑋 → ( ( int ‘ 𝐽 ) ‘ ( 𝑋 ∖ ( 𝑋 ∖ 𝑆 ) ) ) = ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 9 | 8 | adantl | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝑋 ∖ ( 𝑋 ∖ 𝑆 ) ) ) = ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 10 | 9 | difeq2d | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑋 ∖ ( ( int ‘ 𝐽 ) ‘ ( 𝑋 ∖ ( 𝑋 ∖ 𝑆 ) ) ) ) = ( 𝑋 ∖ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 11 | 5 10 | eqtrd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑆 ) ) = ( 𝑋 ∖ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 12 | 11 | difeq2d | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑆 ) ) ) = ( 𝑋 ∖ ( 𝑋 ∖ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ) ) |
| 13 | 1 | ntropn | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ∈ 𝐽 ) |
| 14 | 1 | eltopss | ⊢ ( ( 𝐽 ∈ Top ∧ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ∈ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑋 ) |
| 15 | 13 14 | syldan | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑋 ) |
| 16 | dfss4 | ⊢ ( ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑋 ↔ ( 𝑋 ∖ ( 𝑋 ∖ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ) = ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) | |
| 17 | 15 16 | sylib | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑋 ∖ ( 𝑋 ∖ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ) = ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 18 | 12 17 | eqtr2d | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑆 ) ) ) ) |