This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An interior of a complement is the complement of the closure. This set is also known as the exterior of A . (Contributed by Jeff Hankins, 31-Aug-2009)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clscld.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | ntrdif | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝐴 ) ) = ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | difss | ⊢ ( 𝑋 ∖ 𝐴 ) ⊆ 𝑋 | |
| 3 | 1 | ntrval2 | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑋 ∖ 𝐴 ) ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝐴 ) ) = ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ ( 𝑋 ∖ 𝐴 ) ) ) ) ) |
| 4 | 2 3 | mpan2 | ⊢ ( 𝐽 ∈ Top → ( ( int ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝐴 ) ) = ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ ( 𝑋 ∖ 𝐴 ) ) ) ) ) |
| 5 | 4 | adantr | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝐴 ) ) = ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ ( 𝑋 ∖ 𝐴 ) ) ) ) ) |
| 6 | simpr | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → 𝐴 ⊆ 𝑋 ) | |
| 7 | dfss4 | ⊢ ( 𝐴 ⊆ 𝑋 ↔ ( 𝑋 ∖ ( 𝑋 ∖ 𝐴 ) ) = 𝐴 ) | |
| 8 | 6 7 | sylib | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → ( 𝑋 ∖ ( 𝑋 ∖ 𝐴 ) ) = 𝐴 ) |
| 9 | 8 | fveq2d | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ ( 𝑋 ∖ 𝐴 ) ) ) = ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) |
| 10 | 9 | difeq2d | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ ( 𝑋 ∖ 𝐴 ) ) ) ) = ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) ) |
| 11 | 5 10 | eqtrd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝐴 ) ) = ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) ) |