This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The interior of a subset of a topology's base set is the union of all the open sets it includes. Definition of interior of Munkres p. 94. (Contributed by NM, 10-Sep-2006) (Revised by Mario Carneiro, 11-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | iscld.1 | ||
| Assertion | ntrval |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscld.1 | ||
| 2 | 1 | ntrfval | |
| 3 | 2 | fveq1d | |
| 4 | 3 | adantr | |
| 5 | eqid | ||
| 6 | pweq | ||
| 7 | 6 | ineq2d | |
| 8 | 7 | unieqd | |
| 9 | 1 | topopn | |
| 10 | elpw2g | ||
| 11 | 9 10 | syl | |
| 12 | 11 | biimpar | |
| 13 | inex1g | ||
| 14 | 13 | adantr | |
| 15 | 14 | uniexd | |
| 16 | 5 8 12 15 | fvmptd3 | |
| 17 | 4 16 | eqtrd |